On my computer the solution of var('a x y p_x p_y D Rev R l') assume(a,'real') assume(x,'real') assume(y,'real') assume(p_x,'real') assume(p_y,'real') assume(D,'real') assume(Rev,'real') assume(R,'real') assume(l,'real') assume(a<1) assume(a>0) assume(p_x>0) assume(p_y>0) assume(R>0) U =(1/(a+1))*x^(a+1)+y show(LatexExpr(r'\text{La fonction d}^\prime\text{utilité est }U(x,y) = '),U) D= x*p_x + y*p_y show(LatexExpr(r'\text{La Dépense } D = '),D) Rev= R show(LatexExpr(r'\text{Le Revenu } Rev = '),R) L=U+l*(Rev-D) show(LatexExpr(r'\text{Le lagrangien est } \mathcal{L}(x, y, λ) = '),L) FOC = [diff(L,x),diff(L,y),diff(L,l)] show(LatexExpr(r'\text{Les condition du premier ordre sont } \left\{\begin{array}{c}\mathcal{L}_x= 0\\\mathcal{L}_y= 0\\\mathcal{L}_λ= 0\end{array}\right. ')) show(LatexExpr(r'\text{soit }')) show(LatexExpr(r'\mathcal{L}_x= 0 \Longleftrightarrow '),FOC[0]==0) show(LatexExpr(r'\mathcal{L}_y= 0 \Longleftrightarrow '),FOC[1]==0) show(LatexExpr(r'\mathcal{L}_λ= 0 \Longleftrightarrow '),FOC[2]==0) sol=solve([FOC[0]==0,FOC[1]==0,FOC[2]==0],x,y,l) show(sol)
Is nearly correct, but an extra complex exponential term multiplies $x$ and then modifies $y$. Even as an element I do not understand its form : $e^{(2iπz_{5797}a)}$ Could some one explain why ? -- You received this message because you are subscribed to the Google Groups "sage-support" group. To unsubscribe from this group and stop receiving emails from it, send an email to sage-support+unsubscr...@googlegroups.com. To view this discussion on the web visit https://groups.google.com/d/msgid/sage-support/45246016-41e8-4e79-84e9-763037c1eee2n%40googlegroups.com.