Also :
sage: import sympy sage: ex._sympy_().subs({(5^x)._sympy_():t._sympy_()})._sage_() t^2 - 7*t + 4 HTH, Le mercredi 24 novembre 2021 à 17:20:10 UTC+1, Emmanuel Charpentier a écrit : > FWIW : > > sage: var("x, t") > (x, t) > sage: maxima_calculus.ratsubst(t,5^x, ex).sage() > t^2 - 7*t + 4 > sage: maxima_calculus.lratsubst([5^x==t], ex).sage() > t^2 - 7*t + 4 > > See also this ask.sagemath.org question > <https://ask.sagemath.org/question/59881/substitute-multiplication-of-sine-and-cosine-for-a-symbolic-function/> > . > > I think that wrapping Maximas [l]ratsubst might be interesting… > > Le mardi 23 novembre 2021 à 20:42:12 UTC+1, juanlui...@gmail.com a écrit : > >> In the expression (5^x)^2-7*5^x+4, I want to substitute x^5 by t. >> >> With sagemath 7.2 (or another old versions), I can do >> ((5^x)^2-7*5^x+4).subs(5^x==t) >> and I get t^2 - 5*t + 4 >> >> But sagemath 9.4 does not change the first 5^x and he gives >> 5^(2*x) - 7*t + 4 >> >> Why? >> >> (In both cases, var("t") has been previously used) >> >> Yours, >> >> Juan Luis Varona >> >> -- You received this message because you are subscribed to the Google Groups "sage-support" group. To unsubscribe from this group and stop receiving emails from it, send an email to sage-support+unsubscr...@googlegroups.com. To view this discussion on the web visit https://groups.google.com/d/msgid/sage-support/8f1ee0c8-ecbe-4def-8980-b6cf112de8aan%40googlegroups.com.