Forgot to add : pM.eigenvectors_right() doesn’t returns after 5 hours… And, 
yes, all pM‘s elements have a radical expression : 

sage: sM
[         -sqrt(2) - 1 1/4*I*sqrt(759) - 1/4            -2*sqrt(3)]
[  1/2*I*sqrt(3) + 1/2    1/8*sqrt(33) + 1/8   -1/5*sqrt(29) + 3/5]
[                    0                   1/4  1/2*I*sqrt(23) + 1/2]

HTH,
​
Le vendredi 11 juin 2021 à 09:51:46 UTC+2, Emmanuel Charpentier a écrit :

> As the first part of a demonstration on eigensystems, I was surprised to 
> see that computing QQbar polynomial roots was way slower that computing 
> the roots of the same polynomial expressed as a symbolic expression, or 
> solveing it :
>
> # Relative timings of QQbar.roots and solve
> from time import time as stime
> BR = QQbar
> Dim = 3
> set_random_seed(0)
> pM = MatrixSpace(BR, Dim).random_element()
> sM = matrix([[SR(u.radical_expression()) for u in v] for v in pM])
> sl = var("sl")
> slI = sl*diagonal_matrix([1]*Dim)
> sCM = sM - slI
> sCP = sCM.det()
> t0 = stime()
> SS = solve(sCP, sl)
> t1 = stime()
> SR = sCP.roots()
> t2 = stime()
> R1.<pl> = BR[]
> plI = pl*diagonal_matrix([1]*Dim)
> pCM = pM - plI
> pCP = pCM.det()
> t3 = stime()
> SP = pCP.roots()
> t4 = stime()
> print("solve : %7.2f, roots(symbolic) : %7.2f, roots(QQbar) : %7.2f"%\
>       (t1 -t0, t2 - t1, t4 - t3))
>
> gives :
>
> solve :    2.36, roots(symbolic) :    2.04, roots(QQbar) :  600.07
>
> a quick check on Cocalc <https://cocalc.com> showed the same behavior in 
> 9.1 ; so if it is a problem, it is not a recent one…
>
> Is this the expected behavior ?
> ​
>

-- 
You received this message because you are subscribed to the Google Groups 
"sage-support" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to sage-support+unsubscr...@googlegroups.com.
To view this discussion on the web visit 
https://groups.google.com/d/msgid/sage-support/5cda36c5-ec20-49c1-b126-93b01e868991n%40googlegroups.com.

Reply via email to