Yes, but according to that paper it will be 65, and not 37. The paper is from 2016, maybe with an older SAGE version I get 65?. I tried version 7 and also I obtained 37. --------------------------------------------------------------------- D.Sc. Juan del Carmen Grados Vásquez Laboratório Nacional de Computação Científica Tel: +55 21 97633 3228 (http://www.lncc.br/) http://juaninf.blogspot.com ---------------------------------------------------------------------
El dom, 7 feb 2021 a las 22:43, Vincent Delecroix (< 20100.delecr...@gmail.com>) escribió: > Note that these are 37 inequalities and not 65. > > Le 07/02/2021 à 19:41, Vincent Delecroix a écrit : > > Dear Juan, > > > > With sage 9.2 I obtain very quickly the output > > > > An inequality (-1, -1, -1, 0, 0, 0, 1) x + 2 >= 0 > > An inequality (0, -1, 0, 0, 0, 0, 0) x + 1 >= 0 > > An inequality (-1, 0, 0, 0, 0, 0, 0) x + 1 >= 0 > > An inequality (0, 0, -1, 0, 0, 0, 0) x + 1 >= 0 > > An inequality (-1, 1, 0, 0, 0, 0, -1) x + 1 >= 0 > > An inequality (-1, 0, 1, 0, 0, 0, -1) x + 1 >= 0 > > An inequality (0, -1, 1, 0, 0, 0, -1) x + 1 >= 0 > > An inequality (0, 1, -1, 0, 0, 0, -1) x + 1 >= 0 > > An inequality (1, -1, 0, 0, 0, 0, -1) x + 1 >= 0 > > An inequality (1, 0, -1, 0, 0, 0, -1) x + 1 >= 0 > > An inequality (1, 1, 1, -3, 0, 0, -2) x + 2 >= 0 > > An inequality (0, 0, 1, -1, 0, 0, -1) x + 1 >= 0 > > An inequality (1, 0, 0, -1, 0, 0, -1) x + 1 >= 0 > > An inequality (0, 0, 0, -1, 0, 0, 0) x + 1 >= 0 > > An inequality (0, 1, 0, -1, 0, 0, -1) x + 1 >= 0 > > An inequality (0, 0, 0, 0, -1, 0, 0) x + 1 >= 0 > > An inequality (0, 0, 0, 0, 0, -1, 0) x + 1 >= 0 > > An inequality (0, 0, -1, 1, -1, 0, -1) x + 2 >= 0 > > An inequality (-1, 0, 0, 1, -1, 0, -1) x + 2 >= 0 > > An inequality (0, -1, 0, 1, -1, 0, -1) x + 2 >= 0 > > An inequality (-1, -1, -1, 3, -3, 0, -2) x + 5 >= 0 > > An inequality (1, 1, 1, 0, 0, 0, 1) x - 1 >= 0 > > An inequality (0, 0, 1, 0, 0, 0, 0) x + 0 >= 0 > > An inequality (0, 0, 0, 1, 0, 0, 0) x + 0 >= 0 > > An inequality (0, 0, 1, 0, 1, -1, -1) x + 1 >= 0 > > An inequality (0, 1, 0, 0, 1, -1, -1) x + 1 >= 0 > > An inequality (1, 1, 1, 0, 3, -3, -2) x + 2 >= 0 > > An inequality (-1, -1, -1, 3, 0, 3, -2) x + 2 >= 0 > > An inequality (0, 1, 0, 0, 0, 0, 0) x + 0 >= 0 > > An inequality (1, 0, 0, 0, 1, -1, -1) x + 1 >= 0 > > An inequality (0, 0, 0, 0, 0, 0, 1) x + 0 >= 0 > > An inequality (1, 0, 0, 0, 0, 0, 0) x + 0 >= 0 > > An inequality (0, 0, 0, 0, 1, 0, 0) x + 0 >= 0 > > An inequality (0, 0, 0, 0, 0, 1, 0) x + 0 >= 0 > > An inequality (0, -1, 0, 1, 0, 1, -1) x + 1 >= 0 > > An inequality (-1, 0, 0, 1, 0, 1, -1) x + 1 >= 0 > > An inequality (0, 0, -1, 1, 0, 1, -1) x + 1 >= 0 > > > > You should describe more precisely what is the problem with your > > version 9. What is not working with the code? > > > > Best regards, > > Vincent > > > > Le 07/02/2021 à 19:34, Juan Grados a écrit : > >> Dear members, > >> I am trying to reproduce page 9 of > >> https://eprint.iacr.org/2016/407.pdf but > >> until now is not possible to find the 65 inequalities that paper says. > >> I am > >> thinking that maybe this is because the version of SAGE I am using > >> (this is > >> 9). Do you think that there is any chance to obtain 65 inequalities > >> using P.Hrepresentation() in other version of SAGE? > >> > >> from sage.all import * > >> vertices = [i for i in range(2**6)] > >> vertices_to_drop = [] > >> def eq(x, y, z): > >> if (x == y and y == z): > >> return 1 > >> return 0 > >> for j in range(2**6): > >> if ((((j>>5)&1) == ((j>>4)&1) and ((j>>4)&1) == ((j>>3)&1)) and > >> (((j>>3)&1) != (((j>>2)&1) ^ ((j>>1)&1) ^ ((j>>0)&1)))): > >> vertices_to_drop.append(j); > >> possible_patterns = list(set(vertices) - set(vertices_to_drop)) > >> print(possible_patterns) > >> possible_patterns_vector = [] > >> for num in possible_patterns: > >> possible_patterns_vector.append([int(n) for n in > >> bin(num)[2:].zfill(6)] + [eq(((num>>5)&1), ((num>>4)&1), ((num>>3)&1)) > >> ^ 1]) > >> print(possible_patterns_vector[0]) > >> print(possible_patterns_vector[1]) > >> P = Polyhedron(vertices = possible_patterns_vector) > >> for h in P.Hrepresentation(): > >> print(h) > >> > >> > >> > >> > >> --------------------------------------------------------------------- > >> D.Sc. Juan del Carmen Grados Vásquez > >> Laboratório Nacional de Computação Científica > >> Tel: +55 21 97633 3228 > >> (http://www.lncc.br/) > >> http://juaninf.blogspot.com > >> --------------------------------------------------------------------- > >> > > -- > You received this message because you are subscribed to the Google Groups > "sage-support" group. > To unsubscribe from this group and stop receiving emails from it, send an > email to sage-support+unsubscr...@googlegroups.com. > To view this discussion on the web visit > https://groups.google.com/d/msgid/sage-support/a5e68912-24fb-b598-1311-04350e2251a6%40gmail.com > . > -- You received this message because you are subscribed to the Google Groups "sage-support" group. To unsubscribe from this group and stop receiving emails from it, send an email to sage-support+unsubscr...@googlegroups.com. To view this discussion on the web visit https://groups.google.com/d/msgid/sage-support/CABhJSpnxecwMdpAeCs0Oep85Z2bmexfqWFcdZwLCPS%2BF9UpFyA%40mail.gmail.com.