Yes, but according to that paper it will be 65, and not 37. The paper is
from 2016, maybe with an older SAGE version I get 65?. I tried version 7
and also I obtained 37.
---------------------------------------------------------------------
D.Sc. Juan del Carmen Grados Vásquez
Laboratório Nacional de Computação Científica
Tel: +55 21 97633 3228
(http://www.lncc.br/)
http://juaninf.blogspot.com
---------------------------------------------------------------------


El dom, 7 feb 2021 a las 22:43, Vincent Delecroix (<
20100.delecr...@gmail.com>) escribió:

> Note that these are 37 inequalities and not 65.
>
> Le 07/02/2021 à 19:41, Vincent Delecroix a écrit :
> > Dear Juan,
> >
> > With sage 9.2 I obtain very quickly the output
> >
> > An inequality (-1, -1, -1, 0, 0, 0, 1) x + 2 >= 0
> > An inequality (0, -1, 0, 0, 0, 0, 0) x + 1 >= 0
> > An inequality (-1, 0, 0, 0, 0, 0, 0) x + 1 >= 0
> > An inequality (0, 0, -1, 0, 0, 0, 0) x + 1 >= 0
> > An inequality (-1, 1, 0, 0, 0, 0, -1) x + 1 >= 0
> > An inequality (-1, 0, 1, 0, 0, 0, -1) x + 1 >= 0
> > An inequality (0, -1, 1, 0, 0, 0, -1) x + 1 >= 0
> > An inequality (0, 1, -1, 0, 0, 0, -1) x + 1 >= 0
> > An inequality (1, -1, 0, 0, 0, 0, -1) x + 1 >= 0
> > An inequality (1, 0, -1, 0, 0, 0, -1) x + 1 >= 0
> > An inequality (1, 1, 1, -3, 0, 0, -2) x + 2 >= 0
> > An inequality (0, 0, 1, -1, 0, 0, -1) x + 1 >= 0
> > An inequality (1, 0, 0, -1, 0, 0, -1) x + 1 >= 0
> > An inequality (0, 0, 0, -1, 0, 0, 0) x + 1 >= 0
> > An inequality (0, 1, 0, -1, 0, 0, -1) x + 1 >= 0
> > An inequality (0, 0, 0, 0, -1, 0, 0) x + 1 >= 0
> > An inequality (0, 0, 0, 0, 0, -1, 0) x + 1 >= 0
> > An inequality (0, 0, -1, 1, -1, 0, -1) x + 2 >= 0
> > An inequality (-1, 0, 0, 1, -1, 0, -1) x + 2 >= 0
> > An inequality (0, -1, 0, 1, -1, 0, -1) x + 2 >= 0
> > An inequality (-1, -1, -1, 3, -3, 0, -2) x + 5 >= 0
> > An inequality (1, 1, 1, 0, 0, 0, 1) x - 1 >= 0
> > An inequality (0, 0, 1, 0, 0, 0, 0) x + 0 >= 0
> > An inequality (0, 0, 0, 1, 0, 0, 0) x + 0 >= 0
> > An inequality (0, 0, 1, 0, 1, -1, -1) x + 1 >= 0
> > An inequality (0, 1, 0, 0, 1, -1, -1) x + 1 >= 0
> > An inequality (1, 1, 1, 0, 3, -3, -2) x + 2 >= 0
> > An inequality (-1, -1, -1, 3, 0, 3, -2) x + 2 >= 0
> > An inequality (0, 1, 0, 0, 0, 0, 0) x + 0 >= 0
> > An inequality (1, 0, 0, 0, 1, -1, -1) x + 1 >= 0
> > An inequality (0, 0, 0, 0, 0, 0, 1) x + 0 >= 0
> > An inequality (1, 0, 0, 0, 0, 0, 0) x + 0 >= 0
> > An inequality (0, 0, 0, 0, 1, 0, 0) x + 0 >= 0
> > An inequality (0, 0, 0, 0, 0, 1, 0) x + 0 >= 0
> > An inequality (0, -1, 0, 1, 0, 1, -1) x + 1 >= 0
> > An inequality (-1, 0, 0, 1, 0, 1, -1) x + 1 >= 0
> > An inequality (0, 0, -1, 1, 0, 1, -1) x + 1 >= 0
> >
> > You should describe more precisely what is the problem with your
> > version 9. What is not working with the code?
> >
> > Best regards,
> > Vincent
> >
> > Le 07/02/2021 à 19:34, Juan Grados a écrit :
> >>   Dear members,
> >> I am trying to reproduce page 9 of
> >> https://eprint.iacr.org/2016/407.pdf but
> >> until now is not possible to find the 65 inequalities that paper says.
> >> I am
> >> thinking that maybe this is because the version of SAGE I am using
> >> (this is
> >> 9). Do you think that there is any chance to obtain 65 inequalities
> >> using P.Hrepresentation() in other version of SAGE?
> >>
> >> from sage.all import *
> >>   vertices = [i for i in range(2**6)]
> >>   vertices_to_drop = []
> >>   def eq(x, y, z):
> >>       if (x == y and y == z):
> >>           return 1
> >>       return 0
> >>   for j in range(2**6):
> >>       if ((((j>>5)&1) == ((j>>4)&1) and ((j>>4)&1) == ((j>>3)&1)) and
> >> (((j>>3)&1) != (((j>>2)&1) ^ ((j>>1)&1) ^ ((j>>0)&1)))):
> >>           vertices_to_drop.append(j);
> >>   possible_patterns = list(set(vertices) - set(vertices_to_drop))
> >>   print(possible_patterns)
> >>   possible_patterns_vector = []
> >>   for num in possible_patterns:
> >>        possible_patterns_vector.append([int(n) for n in
> >> bin(num)[2:].zfill(6)] + [eq(((num>>5)&1), ((num>>4)&1), ((num>>3)&1))
> >> ^ 1])
> >>   print(possible_patterns_vector[0])
> >>   print(possible_patterns_vector[1])
> >>   P = Polyhedron(vertices = possible_patterns_vector)
> >>   for h in P.Hrepresentation():
> >>      print(h)
> >>
> >>
> >>
> >>
> >> ---------------------------------------------------------------------
> >> D.Sc. Juan del Carmen Grados Vásquez
> >> Laboratório Nacional de Computação Científica
> >> Tel: +55 21 97633 3228
> >> (http://www.lncc.br/)
> >> http://juaninf.blogspot.com
> >> ---------------------------------------------------------------------
> >>
>
> --
> You received this message because you are subscribed to the Google Groups
> "sage-support" group.
> To unsubscribe from this group and stop receiving emails from it, send an
> email to sage-support+unsubscr...@googlegroups.com.
> To view this discussion on the web visit
> https://groups.google.com/d/msgid/sage-support/a5e68912-24fb-b598-1311-04350e2251a6%40gmail.com
> .
>

-- 
You received this message because you are subscribed to the Google Groups 
"sage-support" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to sage-support+unsubscr...@googlegroups.com.
To view this discussion on the web visit 
https://groups.google.com/d/msgid/sage-support/CABhJSpnxecwMdpAeCs0Oep85Z2bmexfqWFcdZwLCPS%2BF9UpFyA%40mail.gmail.com.

Reply via email to