Note that these are 37 inequalities and not 65.

Le 07/02/2021 à 19:41, Vincent Delecroix a écrit :
Dear Juan,

With sage 9.2 I obtain very quickly the output

An inequality (-1, -1, -1, 0, 0, 0, 1) x + 2 >= 0
An inequality (0, -1, 0, 0, 0, 0, 0) x + 1 >= 0
An inequality (-1, 0, 0, 0, 0, 0, 0) x + 1 >= 0
An inequality (0, 0, -1, 0, 0, 0, 0) x + 1 >= 0
An inequality (-1, 1, 0, 0, 0, 0, -1) x + 1 >= 0
An inequality (-1, 0, 1, 0, 0, 0, -1) x + 1 >= 0
An inequality (0, -1, 1, 0, 0, 0, -1) x + 1 >= 0
An inequality (0, 1, -1, 0, 0, 0, -1) x + 1 >= 0
An inequality (1, -1, 0, 0, 0, 0, -1) x + 1 >= 0
An inequality (1, 0, -1, 0, 0, 0, -1) x + 1 >= 0
An inequality (1, 1, 1, -3, 0, 0, -2) x + 2 >= 0
An inequality (0, 0, 1, -1, 0, 0, -1) x + 1 >= 0
An inequality (1, 0, 0, -1, 0, 0, -1) x + 1 >= 0
An inequality (0, 0, 0, -1, 0, 0, 0) x + 1 >= 0
An inequality (0, 1, 0, -1, 0, 0, -1) x + 1 >= 0
An inequality (0, 0, 0, 0, -1, 0, 0) x + 1 >= 0
An inequality (0, 0, 0, 0, 0, -1, 0) x + 1 >= 0
An inequality (0, 0, -1, 1, -1, 0, -1) x + 2 >= 0
An inequality (-1, 0, 0, 1, -1, 0, -1) x + 2 >= 0
An inequality (0, -1, 0, 1, -1, 0, -1) x + 2 >= 0
An inequality (-1, -1, -1, 3, -3, 0, -2) x + 5 >= 0
An inequality (1, 1, 1, 0, 0, 0, 1) x - 1 >= 0
An inequality (0, 0, 1, 0, 0, 0, 0) x + 0 >= 0
An inequality (0, 0, 0, 1, 0, 0, 0) x + 0 >= 0
An inequality (0, 0, 1, 0, 1, -1, -1) x + 1 >= 0
An inequality (0, 1, 0, 0, 1, -1, -1) x + 1 >= 0
An inequality (1, 1, 1, 0, 3, -3, -2) x + 2 >= 0
An inequality (-1, -1, -1, 3, 0, 3, -2) x + 2 >= 0
An inequality (0, 1, 0, 0, 0, 0, 0) x + 0 >= 0
An inequality (1, 0, 0, 0, 1, -1, -1) x + 1 >= 0
An inequality (0, 0, 0, 0, 0, 0, 1) x + 0 >= 0
An inequality (1, 0, 0, 0, 0, 0, 0) x + 0 >= 0
An inequality (0, 0, 0, 0, 1, 0, 0) x + 0 >= 0
An inequality (0, 0, 0, 0, 0, 1, 0) x + 0 >= 0
An inequality (0, -1, 0, 1, 0, 1, -1) x + 1 >= 0
An inequality (-1, 0, 0, 1, 0, 1, -1) x + 1 >= 0
An inequality (0, 0, -1, 1, 0, 1, -1) x + 1 >= 0

You should describe more precisely what is the problem with your
version 9. What is not working with the code?

Best regards,
Vincent

Le 07/02/2021 à 19:34, Juan Grados a écrit :
  Dear members,
I am trying to reproduce page 9 of https://eprint.iacr.org/2016/407.pdf but until now is not possible to find the 65 inequalities that paper says. I am thinking that maybe this is because the version of SAGE I am using (this is
9). Do you think that there is any chance to obtain 65 inequalities
using P.Hrepresentation() in other version of SAGE?

from sage.all import *
  vertices = [i for i in range(2**6)]
  vertices_to_drop = []
  def eq(x, y, z):
      if (x == y and y == z):
          return 1
      return 0
  for j in range(2**6):
      if ((((j>>5)&1) == ((j>>4)&1) and ((j>>4)&1) == ((j>>3)&1)) and
(((j>>3)&1) != (((j>>2)&1) ^ ((j>>1)&1) ^ ((j>>0)&1)))):
          vertices_to_drop.append(j);
  possible_patterns = list(set(vertices) - set(vertices_to_drop))
  print(possible_patterns)
  possible_patterns_vector = []
  for num in possible_patterns:
       possible_patterns_vector.append([int(n) for n in
bin(num)[2:].zfill(6)] + [eq(((num>>5)&1), ((num>>4)&1), ((num>>3)&1)) ^ 1])
  print(possible_patterns_vector[0])
  print(possible_patterns_vector[1])
  P = Polyhedron(vertices = possible_patterns_vector)
  for h in P.Hrepresentation():
     print(h)




---------------------------------------------------------------------
D.Sc. Juan del Carmen Grados Vásquez
Laboratório Nacional de Computação Científica
Tel: +55 21 97633 3228
(http://www.lncc.br/)
http://juaninf.blogspot.com
---------------------------------------------------------------------


--
You received this message because you are subscribed to the Google Groups 
"sage-support" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to sage-support+unsubscr...@googlegroups.com.
To view this discussion on the web visit 
https://groups.google.com/d/msgid/sage-support/a5e68912-24fb-b598-1311-04350e2251a6%40gmail.com.

Reply via email to