Dear Vincent, Thanks for your quick reply and all the wealth of info in it ! I’ll test this asap that is aside of my daily job which doesn’t leave me much time...
Kind regard Bertrand Le dim. 16 févr. 2020 à 23:11, Vincent Delecroix <20100.delecr...@gmail.com> a écrit : > It seems that sympy is picky about the input. You can use the following > workaround. Replace > > son = scipy.optimize.newton(f, xstart, df, maxiter= iter) > > By > > f2 = lambda s: float(f(s)) > xstart2 = float(xstart) > df2 = lambda s: float(df(s)) > son = scipy.optimize.newton(f2, xstart2, df2, maxiter= iter) > > I open https://trac.sagemath.org/ticket/29210 to track the issue. > > Vincent > > Le 16/02/2020 à 23:59, Vincent Delecroix a écrit : > > As a start you can notice that SageMath cell has switch to Python 3. To > > see that, run the following two lines in a cell > > > > import sys > > print(sys.version) > > > > In particular you need to modify the print statements from > > > > print whatever > > > > to > > > > print(whatever) > > > > The change from Python 2 to Python 3 impacts more than just the print > > statements, see http://python-future.org/compatible_idioms.html > > > > After making the appropriate change, I can at least reproduce the > > error > > > > TypeError: ufunc 'isfinite' not supported for the input types, and > > the inputs could not be safely coerced to any supported types > > according to the casting rule ''safe'' > > > > ... which is a good start: the bug is reproducible! > > > > Vincent > > > > Le 16/02/2020 à 22:32, Bertrand Cayzac a écrit : > >> Dear Vincent, > >> > >> Sorry I did not paste it...Here it goes. You'll also find it in > >> attachment. > >> > >> It is to be noted that I just ran the code again after a lo,g while > >> and it > >> now exits upon a "print" instruction instruction supposedly in line 33. > >> My guess is that the code is more and more compatible with the SageMath > >> celle interpreter version... I'll dig on that. If you have any idea they > >> are welcome. > >> > >> KInd regards, > >> B > >> > >> > >> > >> <html> > >> <head> > >> <meta name="description" content="Maria Gaetana Agnesi's Versiera (aka > >> Witch) meets arcs."> > >> <meta name="description" content="A mathematical meditation on breast > >> geometry."> > >> <meta name="version" content="9.05"> > >> <meta name="keywords" content=" > >> HTML,JavaScript,Python,SageMathCell,Geometry,Breast"> > >> <meta name="author" content="Floozman"> > >> <meta name="credit" content="circle-cirlcle intersection by Xaedes > >> (Github) > >> "> > >> <meta charset="utf-8"> > >> <meta name="viewport" content="width=device-width"> > >> <title> VmA </title> > >> <script src="https://sagecell.sagemath.org/static/embedded_sagecell.js > "> > >> </script> > >> <script> > >> // Make the div with id 'mycell' a Sage cell > >> sagecell.makeSagecell({inputLocation: '#mycell', > >> template: sagecell.templates.minimal, > >> evalButtonText: 'Let there be breasts !'}); > >> </script> > >> </head> > >> <body> > >> <h2> Versiera meets arcs </h2> > >> Click the button below to make Maria Gaetana Agnesi's Versiera and arcs > >> meet in beauty > >> <div id="mycell"><script type="text/x-sage"> > >> from __future__ import division > >> import numpy as np > >> import scipy.optimize > >> """ > >> circle-circle intersection > >> credit: Xaedes (Github) > >> """ > >> #!/usr/bin/env python2 > >> #-*- coding: utf-8 -*- > >> #from __future__ import division > >> #import numpy as np > >> from math import cos, sin, pi, sqrt, atan2 > >> d2r = pi/180 > >> class Geometry(object): > >> def circle_intersection(self, circle1, circle2): > >> ''' > >> @summary: calculates intersection points of two circles > >> @param circle1: tuple(x,y,radius) > >> @param circle2: tuple(x,y,radius) > >> @result: tuple of intersection points (which are (x,y) tuple) > >> ''' > >> # return self.circle_intersection_sympy(circle1,circle2) > >> x1,y1,r1 = circle1 > >> x2,y2,r2 = circle2 > >> # http://stackoverflow.com/a/3349134/798588 > >> dx,dy = x2-x1,y2-y1 > >> d = sqrt(dx*dx+dy*dy) > >> if d > r1+r2: > >> print "#1" > >> return None # no solutions, the circles are separate > >> if d < abs(r1-r2): > >> print "#2" > >> return None # no solutions because one circle is contained within the > >> other > >> if d == 0 and r1 == r2: > >> print "#3" > >> return None # circles are coincident and there are an infinite number of > >> solutions > >> a = (r1*r1-r2*r2+d*d)/(2*d) > >> h = sqrt(r1*r1-a*a) > >> xm = x1 + a*dx/d > >> ym = y1 + a*dy/d > >> xs1 = xm + h*dy/d > >> xs2 = xm - h*dy/d > >> ys1 = ym - h*dx/d > >> ys2 = ym + h*dx/d > >> return (xs1,ys1),(xs2,ys2) > >> def circle_intersection_sympy(self, circle1, circle2): > >> from sympy.geometry import Circle, Point > >> x1,y1,r1 = circle1 > >> x2,y2,r2 = circle2 > >> c1=Circle(Point(x1,y1),r1) > >> c2=Circle(Point(x2,y2),r2) > >> intersection = c1.intersection(c2) > >> if len(intersection) == 1: > >> intersection.append(intersection[0]) > >> p1 = intersection[0] > >> p2 = intersection[1] > >> xs1,ys1 = p1.x,p1.y > >> xs2,ys2 = p2.x,p2.y > >> return (xs1,ys1),(xs2,ys2) > >> """ > >> Interaction in the sagemath cell > >> """ > >> @interact > >> def VmA(nipple_x=(1,1.7)): > >> # recommended values for r = 1 : x=(1, 1.5+) > >> var ('u,v,w,x,y,z') > >> var ('breastarc_x,nipple_x,nipple_y') > >> #presentation parameters > >> showmaths = True #print maths > >> showinvisible = True #Above and beyond breast, print curves in dotted > >> line > >> thk = 2 # thickness of the visible > >> wi = 5 # width of the frame > >> #geometry parameters > >> r = 1 # Versiera radius > >> d=2*r # Versiera diameter > >> ptinf= (2*r)/sqrt(3) # Versiera positive point of inflexion > >> breastarc_r=0.9 # breast circle radius > >> areo_ratio=4.4 # ratio breast circle / areola circle > >> # Versiera curve > >> versiera = 8*(r^3)/((x^2) + 4*(r^2)) > >> # Versiera curve (parametric) > >> t= var ('t') > >> xvp = d*t > >> yvp = d/(t^2+1) > >> #W=parametric_plot((xvp,yvp-r),(t,0,1)) > >> # Find the y coordinate of the target intersection between versiera and > >> breast arc when x = nipple_x > >> nipple_y = 8*(r^3)/((nipple_x^2) + 4*(r^2)) > >> # Plot versiera from offset to nipple_x (heigth is shifted down 0.5 by > >> subtracting the radius). > >> offset=r-breastarc_r > >> > P=plot(versiera-r,offset+0.12,nipple_x,fill=0,rgbcolor="black",fillcolor='white',thickness=thk) > > >> > >> > >> S=P > >> # Find the x coordinate of the center of a circle with radius > breastarc_r > >> to which belongs point (nipple_x, nipple_y) > >> eqdelta = (nipple_y-r)^2 + z^2 == breastarc_r^2 > >> soldelta = solve([eqdelta],z,solution_dict=True) > >> breastarc_x=nipple_x-soldelta[1][z] > >> # Areola as a circle of center (areo_x,areo_y) and radius areo_r > >> areo_r = nipple_x/ areo_ratio > >> areo_x = nipple_x > >> areo_y = nipple_y-r > >> # Store the circles > >> tuplebreast= breastarc_x, 0, breastarc_r > >> tupleareo = areo_x, areo_y, areo_r > >> # Draw the breast arc > >> var('m,n') > >> arcbreast = (m-breastarc_x)^2 + (n-0) ^2 == breastarc_r^2 > >> U=implicit_plot(arcbreast, (m, offset,r*2), > >> (n,-r,nipple_y-r),color='black',linewidth=thk) > >> S=S+U > >> # Find areola low intersection point with circle > >> geom = Geometry() > >> getint = geom.circle_intersection(circle1=tuplebreast, > circle2=tupleareo) > >> areoint_x = getint[0][0] > >> # Find areola intersection point with Versiera > >> function ('xt') (t) > >> function ('yt') (t) > >> function ('f') (t) > >> function ('df') (t) > >> xt(t) = 2*t > >> yt(t) = d/(t^2+1)-r > >> f(t)= (xt(x=t)-areo_x)^2 + (yt(x=t)-areo_y)^2 - areo_r^2 > >> #st = solve([f(t) == 0],t) > >> df(t) = f(x=t).derivative() > >> # Use Newton-Raphson approximation > >> var ('xstart') > >> xstart=nipple_x/3.3 > >> iter = 100 > >> son = scipy.optimize.newton(f,xstart,df, maxiter= iter) > >> dyvp=(yt(son)) > >> # Draw the areola circle between intersection points > >> var ('o,p') > >> arcareo = (o-areo_x)^2 + (p-areo_y)^2 == areo_r^2 > >> V=implicit_plot(arcareo, (o,0,areoint_x), > >> (p,-r,dyvp),color='black',linewidth=thk) > >> S=S+V > >> # Draw the vertical line perpendicular to x axis at Versiera's positive > >> point of inflexion > >> L=line( [ (ptinf , -r), (ptinf, r) ], color="purple", thickness=1, > >> linestyle="-.") > >> S=S+L > >> # Plot the whole shebang > >> if showinvisible : > >> > IPV=plot(versiera-r,nipple_x,wi,fill=0,rgbcolor='black',fillcolor='white',linestyle='dotted') > > >> > >> > >> S=S+IPV > >> IPV2 = plot(versiera-r,-wi, > >> > offset+0.12,fill=0,rgbcolor='black',fillcolor='white',linestyle='dotted') > >> S=S+IPV2 > >> IPC = implicit_plot(arcbreast, (m, -r,r*2), (n,-r,r),color='black', > >> linestyle='dotted') > >> S=S+IPC > >> IPA = implicit_plot(arcareo, (o,0,wi), (p,-0.5,1),color='black', > >> linestyle='dotted') > >> S=S+IPA > >> S.show (axes=true,aspect_ratio=1) > >> if showmaths : > >> show ('nipple coordinates : x = ', nipple_x, ' y = ', nipple_y-r) > >> show ('areola / breast circle intersection coordinates : x = ', > >> areoint_x, > >> ' y = ', nipple_y-r) > >> show ('areola / Versiera intersection coordinates : x = ', xt(son), ' y > = > >> ', dyvp) > >> show ('numerical resolution : ') > >> show (' f(t) : ', f(t)) > >> show (' dérivée df(t) : ', df) > >> show (' t approximation for f(t) = 0 (Newton-Raphson method) : ', son) > >> #show ('df(t) = 0 : ', st) > >> return > >> </script> > >> </div> > >> </body> > >> </html> > >> > >> > >> On Sun, Feb 16, 2020 at 8:51 PM Vincent Delecroix > >> <20100.delecr...@gmail.com> > >> wrote: > >> > >>> Dear Bertrand, > >>> > >>> Where is "the code below"? > >>> > >>> Vincent > >>> > >>> Le 16/02/2020 à 15:44, Bertrand Cayzac a écrit : > >>>> Hello, > >>>> > >>>> The code below worked happlily each time I launched it in SageMathCell > >>>> until recently. It now exits with the error below in a call to > >>>> scipy.optimize.newton while I didn't make any change; > >>>> > >>>> I gathered that the casting rules have changed but it seems that ufunc > >>> doesn't take a "casting" argument in version 1.16 and I can't seem to > >>> fin a > >>> way to override > >>>> > >>>> the safe rule. I don't know how to import or install a different > >>>> version > >>> in a cell. > >>>> > >>>> Any idea? > >>>> > >>>> > >>>> > >>>> Last lines of the trace : > >>>> > >>>> > >>> > /home/sc_serv/sage/local/lib/python2.7/site-packages/numpy/core/numeric.pyc > >>> > >>> in isclose(a, b, rtol, atol, equal_nan) 2519 y = array(y, > >>> dtype=dt, > >>> copy=False, subok=True) 2520 -> 2521 xfin = isfinite(x) 2522 > >>> yfin = isfinite(y) 2523 if all(xfin) and all(yfin): > >>>> TypeError: ufunc 'isfinite' not supported for the input types, and the > >>> inputs could not be safely coerced to any supported types according > >>> to the > >>> casting rule ''safe'' > >>>> > >>>> > >>>> > >>>> The curent versions in SageMathCell are the following (I don't know > >>>> what > >>>> they used to be when the code was working) > >>>> > >>>> Python : 2.7.15 (default, Oct 6 2019, 03:20:16) [GCC 7.4.0] > >>>> Numpy : 1.16.1 > >>>> Scipy : 1.2.0 > >>>> > >>>> > >>>> I gathered that the casting rules have changed but it seems that ufunc > >>> doesn't take a "casting" argument in version 1.16 and I can't seem to > >>> fin a > >>> way to override > >>>> > >>>> the safe rule. I don't know how to import or install a different > >>>> version > >>> in a cell. > >>>> > >>>> Any idea? > >>>> > >>>> > >>>> Thanks and regards, > >>>> > >>>> Bertrand Cayzac bnhmcay...@gmail.com > >>>> > >>> > >>> -- > >>> You received this message because you are subscribed to the Google > >>> Groups > >>> "sage-support" group. > >>> To unsubscribe from this group and stop receiving emails from it, > >>> send an > >>> email to sage-support+unsubscr...@googlegroups.com. > >>> To view this discussion on the web visit > >>> > https://groups.google.com/d/msgid/sage-support/de7bfd77-7f73-e52b-8ac0-68d75a68949d%40gmail.com > >>> > >>> . > >>> > >> > > -- > You received this message because you are subscribed to the Google Groups > "sage-support" group. > To unsubscribe from this group and stop receiving emails from it, send an > email to sage-support+unsubscr...@googlegroups.com. > To view this discussion on the web visit > https://groups.google.com/d/msgid/sage-support/ac7a2778-7af3-63e4-8b80-ba6d0ff07bcc%40gmail.com > . > -- You received this message because you are subscribed to the Google Groups "sage-support" group. To unsubscribe from this group and stop receiving emails from it, send an email to sage-support+unsubscr...@googlegroups.com. To view this discussion on the web visit https://groups.google.com/d/msgid/sage-support/CAGaUOAU-2FEKVeosKBjdcdSON5EmORQhxo0pa%2B_DUSzAqP2-NQ%40mail.gmail.com.