Dear Vincent, Sorry I did not paste it...Here it goes. You'll also find it in attachment.
It is to be noted that I just ran the code again after a lo,g while and it now exits upon a "print" instruction instruction supposedly in line 33. My guess is that the code is more and more compatible with the SageMath celle interpreter version... I'll dig on that. If you have any idea they are welcome. KInd regards, B <html> <head> <meta name="description" content="Maria Gaetana Agnesi's Versiera (aka Witch) meets arcs."> <meta name="description" content="A mathematical meditation on breast geometry."> <meta name="version" content="9.05"> <meta name="keywords" content=" HTML,JavaScript,Python,SageMathCell,Geometry,Breast"> <meta name="author" content="Floozman"> <meta name="credit" content="circle-cirlcle intersection by Xaedes (Github) "> <meta charset="utf-8"> <meta name="viewport" content="width=device-width"> <title> VmA </title> <script src="https://sagecell.sagemath.org/static/embedded_sagecell.js"> </script> <script> // Make the div with id 'mycell' a Sage cell sagecell.makeSagecell({inputLocation: '#mycell', template: sagecell.templates.minimal, evalButtonText: 'Let there be breasts !'}); </script> </head> <body> <h2> Versiera meets arcs </h2> Click the button below to make Maria Gaetana Agnesi's Versiera and arcs meet in beauty <div id="mycell"><script type="text/x-sage"> from __future__ import division import numpy as np import scipy.optimize """ circle-circle intersection credit: Xaedes (Github) """ #!/usr/bin/env python2 #-*- coding: utf-8 -*- #from __future__ import division #import numpy as np from math import cos, sin, pi, sqrt, atan2 d2r = pi/180 class Geometry(object): def circle_intersection(self, circle1, circle2): ''' @summary: calculates intersection points of two circles @param circle1: tuple(x,y,radius) @param circle2: tuple(x,y,radius) @result: tuple of intersection points (which are (x,y) tuple) ''' # return self.circle_intersection_sympy(circle1,circle2) x1,y1,r1 = circle1 x2,y2,r2 = circle2 # http://stackoverflow.com/a/3349134/798588 dx,dy = x2-x1,y2-y1 d = sqrt(dx*dx+dy*dy) if d > r1+r2: print "#1" return None # no solutions, the circles are separate if d < abs(r1-r2): print "#2" return None # no solutions because one circle is contained within the other if d == 0 and r1 == r2: print "#3" return None # circles are coincident and there are an infinite number of solutions a = (r1*r1-r2*r2+d*d)/(2*d) h = sqrt(r1*r1-a*a) xm = x1 + a*dx/d ym = y1 + a*dy/d xs1 = xm + h*dy/d xs2 = xm - h*dy/d ys1 = ym - h*dx/d ys2 = ym + h*dx/d return (xs1,ys1),(xs2,ys2) def circle_intersection_sympy(self, circle1, circle2): from sympy.geometry import Circle, Point x1,y1,r1 = circle1 x2,y2,r2 = circle2 c1=Circle(Point(x1,y1),r1) c2=Circle(Point(x2,y2),r2) intersection = c1.intersection(c2) if len(intersection) == 1: intersection.append(intersection[0]) p1 = intersection[0] p2 = intersection[1] xs1,ys1 = p1.x,p1.y xs2,ys2 = p2.x,p2.y return (xs1,ys1),(xs2,ys2) """ Interaction in the sagemath cell """ @interact def VmA(nipple_x=(1,1.7)): # recommended values for r = 1 : x=(1, 1.5+) var ('u,v,w,x,y,z') var ('breastarc_x,nipple_x,nipple_y') #presentation parameters showmaths = True #print maths showinvisible = True #Above and beyond breast, print curves in dotted line thk = 2 # thickness of the visible wi = 5 # width of the frame #geometry parameters r = 1 # Versiera radius d=2*r # Versiera diameter ptinf= (2*r)/sqrt(3) # Versiera positive point of inflexion breastarc_r=0.9 # breast circle radius areo_ratio=4.4 # ratio breast circle / areola circle # Versiera curve versiera = 8*(r^3)/((x^2) + 4*(r^2)) # Versiera curve (parametric) t= var ('t') xvp = d*t yvp = d/(t^2+1) #W=parametric_plot((xvp,yvp-r),(t,0,1)) # Find the y coordinate of the target intersection between versiera and breast arc when x = nipple_x nipple_y = 8*(r^3)/((nipple_x^2) + 4*(r^2)) # Plot versiera from offset to nipple_x (heigth is shifted down 0.5 by subtracting the radius). offset=r-breastarc_r P=plot(versiera-r,offset+0.12,nipple_x,fill=0,rgbcolor="black",fillcolor='white',thickness=thk) S=P # Find the x coordinate of the center of a circle with radius breastarc_r to which belongs point (nipple_x, nipple_y) eqdelta = (nipple_y-r)^2 + z^2 == breastarc_r^2 soldelta = solve([eqdelta],z,solution_dict=True) breastarc_x=nipple_x-soldelta[1][z] # Areola as a circle of center (areo_x,areo_y) and radius areo_r areo_r = nipple_x/ areo_ratio areo_x = nipple_x areo_y = nipple_y-r # Store the circles tuplebreast= breastarc_x, 0, breastarc_r tupleareo = areo_x, areo_y, areo_r # Draw the breast arc var('m,n') arcbreast = (m-breastarc_x)^2 + (n-0) ^2 == breastarc_r^2 U=implicit_plot(arcbreast, (m, offset,r*2), (n,-r,nipple_y-r),color='black',linewidth=thk) S=S+U # Find areola low intersection point with circle geom = Geometry() getint = geom.circle_intersection(circle1=tuplebreast, circle2=tupleareo) areoint_x = getint[0][0] # Find areola intersection point with Versiera function ('xt') (t) function ('yt') (t) function ('f') (t) function ('df') (t) xt(t) = 2*t yt(t) = d/(t^2+1)-r f(t)= (xt(x=t)-areo_x)^2 + (yt(x=t)-areo_y)^2 - areo_r^2 #st = solve([f(t) == 0],t) df(t) = f(x=t).derivative() # Use Newton-Raphson approximation var ('xstart') xstart=nipple_x/3.3 iter = 100 son = scipy.optimize.newton(f,xstart,df, maxiter= iter) dyvp=(yt(son)) # Draw the areola circle between intersection points var ('o,p') arcareo = (o-areo_x)^2 + (p-areo_y)^2 == areo_r^2 V=implicit_plot(arcareo, (o,0,areoint_x), (p,-r,dyvp),color='black',linewidth=thk) S=S+V # Draw the vertical line perpendicular to x axis at Versiera's positive point of inflexion L=line( [ (ptinf , -r), (ptinf, r) ], color="purple", thickness=1, linestyle="-.") S=S+L # Plot the whole shebang if showinvisible : IPV=plot(versiera-r,nipple_x,wi,fill=0,rgbcolor='black',fillcolor='white',linestyle='dotted') S=S+IPV IPV2 = plot(versiera-r,-wi, offset+0.12,fill=0,rgbcolor='black',fillcolor='white',linestyle='dotted') S=S+IPV2 IPC = implicit_plot(arcbreast, (m, -r,r*2), (n,-r,r),color='black', linestyle='dotted') S=S+IPC IPA = implicit_plot(arcareo, (o,0,wi), (p,-0.5,1),color='black', linestyle='dotted') S=S+IPA S.show (axes=true,aspect_ratio=1) if showmaths : show ('nipple coordinates : x = ', nipple_x, ' y = ', nipple_y-r) show ('areola / breast circle intersection coordinates : x = ', areoint_x, ' y = ', nipple_y-r) show ('areola / Versiera intersection coordinates : x = ', xt(son), ' y = ', dyvp) show ('numerical resolution : ') show (' f(t) : ', f(t)) show (' dérivée df(t) : ', df) show (' t approximation for f(t) = 0 (Newton-Raphson method) : ', son) #show ('df(t) = 0 : ', st) return </script> </div> </body> </html> On Sun, Feb 16, 2020 at 8:51 PM Vincent Delecroix <20100.delecr...@gmail.com> wrote: > Dear Bertrand, > > Where is "the code below"? > > Vincent > > Le 16/02/2020 à 15:44, Bertrand Cayzac a écrit : > > Hello, > > > > The code below worked happlily each time I launched it in SageMathCell > > until recently. It now exits with the error below in a call to > > scipy.optimize.newton while I didn't make any change; > > > > I gathered that the casting rules have changed but it seems that ufunc > doesn't take a "casting" argument in version 1.16 and I can't seem to fin a > way to override > > > > the safe rule. I don't know how to import or install a different version > in a cell. > > > > Any idea? > > > > > > > > Last lines of the trace : > > > > > /home/sc_serv/sage/local/lib/python2.7/site-packages/numpy/core/numeric.pyc > in isclose(a, b, rtol, atol, equal_nan) 2519 y = array(y, dtype=dt, > copy=False, subok=True) 2520 -> 2521 xfin = isfinite(x) 2522 > yfin = isfinite(y) 2523 if all(xfin) and all(yfin): > > TypeError: ufunc 'isfinite' not supported for the input types, and the > inputs could not be safely coerced to any supported types according to the > casting rule ''safe'' > > > > > > > > The curent versions in SageMathCell are the following (I don't know what > > they used to be when the code was working) > > > > Python : 2.7.15 (default, Oct 6 2019, 03:20:16) [GCC 7.4.0] > > Numpy : 1.16.1 > > Scipy : 1.2.0 > > > > > > I gathered that the casting rules have changed but it seems that ufunc > doesn't take a "casting" argument in version 1.16 and I can't seem to fin a > way to override > > > > the safe rule. I don't know how to import or install a different version > in a cell. > > > > Any idea? > > > > > > Thanks and regards, > > > > Bertrand Cayzac bnhmcay...@gmail.com > > > > -- > You received this message because you are subscribed to the Google Groups > "sage-support" group. > To unsubscribe from this group and stop receiving emails from it, send an > email to sage-support+unsubscr...@googlegroups.com. > To view this discussion on the web visit > https://groups.google.com/d/msgid/sage-support/de7bfd77-7f73-e52b-8ac0-68d75a68949d%40gmail.com > . > -- You received this message because you are subscribed to the Google Groups "sage-support" group. To unsubscribe from this group and stop receiving emails from it, send an email to sage-support+unsubscr...@googlegroups.com. To view this discussion on the web visit https://groups.google.com/d/msgid/sage-support/CAGaUOAXuWew21D_AugNb6QFdrK9La4YaUtWc%3D0TqCvQ7rtVqdg%40mail.gmail.com.
<html> <head> <meta name="description" content="Maria Gaetana Agnesi's Versiera (aka Witch) meets arcs."> <meta name="description" content="A mathematical meditation on breast geometry."> <meta name="version" content="9.05"> <meta name="keywords" content="HTML,JavaScript,Python,SageMathCell,Geometry,Breast"> <meta name="author" content="Floozman"> <meta name="credit" content="circle-cirlcle intersection by Xaedes (Github)"> <meta charset="utf-8"> <meta name="viewport" content="width=device-width"> <title> VmA </title> <script src="https://sagecell.sagemath.org/static/embedded_sagecell.js"></script> <script> // Make the div with id 'mycell' a Sage cell sagecell.makeSagecell({inputLocation: '#mycell', template: sagecell.templates.minimal, evalButtonText: 'Let there be breasts !'}); </script> </head> <body> <h2> Versiera meets arcs </h2> Click the button below to make Maria Gaetana Agnesi's Versiera and arcs meet in beauty <div id="mycell"><script type="text/x-sage"> from __future__ import division import numpy as np import scipy.optimize """ circle-circle intersection credit: Xaedes (Github) """ #!/usr/bin/env python2 #-*- coding: utf-8 -*- #from __future__ import division #import numpy as np from math import cos, sin, pi, sqrt, atan2 d2r = pi/180 class Geometry(object): def circle_intersection(self, circle1, circle2): ''' @summary: calculates intersection points of two circles @param circle1: tuple(x,y,radius) @param circle2: tuple(x,y,radius) @result: tuple of intersection points (which are (x,y) tuple) ''' # return self.circle_intersection_sympy(circle1,circle2) x1,y1,r1 = circle1 x2,y2,r2 = circle2 # http://stackoverflow.com/a/3349134/798588 dx,dy = x2-x1,y2-y1 d = sqrt(dx*dx+dy*dy) if d > r1+r2: print "#1" return None # no solutions, the circles are separate if d < abs(r1-r2): print "#2" return None # no solutions because one circle is contained within the other if d == 0 and r1 == r2: print "#3" return None # circles are coincident and there are an infinite number of solutions a = (r1*r1-r2*r2+d*d)/(2*d) h = sqrt(r1*r1-a*a) xm = x1 + a*dx/d ym = y1 + a*dy/d xs1 = xm + h*dy/d xs2 = xm - h*dy/d ys1 = ym - h*dx/d ys2 = ym + h*dx/d return (xs1,ys1),(xs2,ys2) def circle_intersection_sympy(self, circle1, circle2): from sympy.geometry import Circle, Point x1,y1,r1 = circle1 x2,y2,r2 = circle2 c1=Circle(Point(x1,y1),r1) c2=Circle(Point(x2,y2),r2) intersection = c1.intersection(c2) if len(intersection) == 1: intersection.append(intersection[0]) p1 = intersection[0] p2 = intersection[1] xs1,ys1 = p1.x,p1.y xs2,ys2 = p2.x,p2.y return (xs1,ys1),(xs2,ys2) """ Interaction in the sagemath cell """ @interact def VmA(nipple_x=(1,1.7)): # recommended values for r = 1 : x=(1, 1.5+) var ('u,v,w,x,y,z') var ('breastarc_x,nipple_x,nipple_y') #presentation parameters showmaths = True #print maths showinvisible = True #Above and beyond breast, print curves in dotted line thk = 2 # thickness of the visible wi = 5 # width of the frame #geometry parameters r = 1 # Versiera radius d=2*r # Versiera diameter ptinf= (2*r)/sqrt(3) # Versiera positive point of inflexion breastarc_r=0.9 # breast circle radius areo_ratio=4.4 # ratio breast circle / areola circle # Versiera curve versiera = 8*(r^3)/((x^2) + 4*(r^2)) # Versiera curve (parametric) t= var ('t') xvp = d*t yvp = d/(t^2+1) #W=parametric_plot((xvp,yvp-r),(t,0,1)) # Find the y coordinate of the target intersection between versiera and breast arc when x = nipple_x nipple_y = 8*(r^3)/((nipple_x^2) + 4*(r^2)) # Plot versiera from offset to nipple_x (heigth is shifted down 0.5 by subtracting the radius). offset=r-breastarc_r P=plot(versiera-r,offset+0.12,nipple_x,fill=0,rgbcolor="black",fillcolor='white',thickness=thk) S=P # Find the x coordinate of the center of a circle with radius breastarc_r to which belongs point (nipple_x, nipple_y) eqdelta = (nipple_y-r)^2 + z^2 == breastarc_r^2 soldelta = solve([eqdelta],z,solution_dict=True) breastarc_x=nipple_x-soldelta[1][z] # Areola as a circle of center (areo_x,areo_y) and radius areo_r areo_r = nipple_x/ areo_ratio areo_x = nipple_x areo_y = nipple_y-r # Store the circles tuplebreast= breastarc_x, 0, breastarc_r tupleareo = areo_x, areo_y, areo_r # Draw the breast arc var('m,n') arcbreast = (m-breastarc_x)^2 + (n-0) ^2 == breastarc_r^2 U=implicit_plot(arcbreast, (m, offset,r*2), (n,-r,nipple_y-r),color='black',linewidth=thk) S=S+U # Find areola low intersection point with circle geom = Geometry() getint = geom.circle_intersection(circle1=tuplebreast, circle2=tupleareo) areoint_x = getint[0][0] # Find areola intersection point with Versiera function ('xt') (t) function ('yt') (t) function ('f') (t) function ('df') (t) xt(t) = 2*t yt(t) = d/(t^2+1)-r f(t)= (xt(x=t)-areo_x)^2 + (yt(x=t)-areo_y)^2 - areo_r^2 #st = solve([f(t) == 0],t) df(t) = f(x=t).derivative() # Use Newton-Raphson approximation var ('xstart') xstart=nipple_x/3.3 iter = 100 son = scipy.optimize.newton(f,xstart,df, maxiter= iter) dyvp=(yt(son)) # Draw the areola circle between intersection points var ('o,p') arcareo = (o-areo_x)^2 + (p-areo_y)^2 == areo_r^2 V=implicit_plot(arcareo, (o,0,areoint_x), (p,-r,dyvp),color='black',linewidth=thk) S=S+V # Draw the vertical line perpendicular to x axis at Versiera's positive point of inflexion L=line( [ (ptinf , -r), (ptinf, r) ], color="purple", thickness=1, linestyle="-.") S=S+L # Plot the whole shebang if showinvisible : IPV=plot(versiera-r,nipple_x,wi,fill=0,rgbcolor='black',fillcolor='white',linestyle='dotted') S=S+IPV IPV2 = plot(versiera-r,-wi, offset+0.12,fill=0,rgbcolor='black',fillcolor='white',linestyle='dotted') S=S+IPV2 IPC = implicit_plot(arcbreast, (m, -r,r*2), (n,-r,r),color='black', linestyle='dotted') S=S+IPC IPA = implicit_plot(arcareo, (o,0,wi), (p,-0.5,1),color='black', linestyle='dotted') S=S+IPA S.show (axes=true,aspect_ratio=1) if showmaths : show ('nipple coordinates : x = ', nipple_x, ' y = ', nipple_y-r) show ('areola / breast circle intersection coordinates : x = ', areoint_x, ' y = ', nipple_y-r) show ('areola / Versiera intersection coordinates : x = ', xt(son), ' y = ', dyvp) show ('numerical resolution : ') show (' f(t) : ', f(t)) show (' dérivée df(t) : ', df) show (' t approximation for f(t) = 0 (Newton-Raphson method) : ', son) #show ('df(t) = 0 : ', st) return </script> </div> </body> </html>