Dear all, 1. Why important next functions? k.a_times_b_minus_c k.a_times_b_plus_c k.c_minus_a_times_b sage: k.some_elements ? ... Returns a collection of elements of this finite field *for use in unit testing.*
Why this function are defined as public? 2. Also a few misunderstanding functions - sage: *k.cardinality* ? Type: builtin_function_or_method Base Class: <type 'builtin_function_or_method'> String Form: <built-in method cardinality of FiniteField_givaro_with_category object at 0xbb0eaac> Namespace: Interactive Definition: k.cardinality(self) Docstring: Return the order of this finite field (*same as self.order()*). - sage: *k.cayley_graph() * --------------------------------------------------------------------------- AttributeError Traceback (most recent call last) /home/hamsin/<ipython console> in <module>() /home/hamsin/bin/sage/local/lib/python2.7/site-packages/sage/categories/semigroups.pyc in cayley_graph(self, side, simple, elements, generators, connecting_set) 284 generators = connecting_set 285 if generators is None: --> 286 generators = self.semigroup_generators() 287 if isinstance(generators, (list, tuple)): 288 generators = dict((self(g), self(g)) for g in generators) /home/hamsin/bin/sage/local/lib/python2.7/site-packages/sage/structure/parent.so in sage.structure.parent.Parent.__getattr__ (sage/structure/parent.c:6805)() /home/hamsin/bin/sage/local/lib/python2.7/site-packages/sage/structure/parent.so in sage.structure.parent.getattr_from_other_class (sage/structure/parent.c:3248)() AttributeError: 'FiniteField_givaro_with_category' object has no attribute 'semigroup_generators' - sage: *k.has_base()* *True* sage: *k.has_base* ? Type: builtin_function_or_method Base Class: <type 'builtin_function_or_method'> String Form: <built-in method has_base of FiniteField_givaro_with_category object at 0xbb0eaac> Namespace: Interactive Definition: k.has_base(self, category=None) *??????* * * - sage: *k.ngens* *?* Type: builtin_function_or_method Base Class: <type 'builtin_function_or_method'> String Form: <built-in method ngens of FiniteField_givaro_with_category object at 0xbb0eaac> Namespace: Interactive Definition: k.ngens(self) Docstring: The number of generators of the finite field. * Always 1.* * * - sage: *k.normalize_names ?* Type: builtin_function_or_method Base Class: <type 'builtin_function_or_method'> String Form: <built-in method normalize_names of FiniteField_givaro_with_category object at 0xbb0eaac> Namespace: Interactive Definition: k.normalize_names(self, ngens, names=None) sage: k.normalize_names() --------------------------------------------------------------------------- TypeError Traceback (most recent call last) /home/hamsin/<ipython console> in <module>() /home/hamsin/bin/sage/local/lib/python2.7/site-packages/sage/structure/category_object.so in sage.structure.category_object.CategoryObject.normalize_names (sage/structure/category_object.c:3939)() TypeError: normalize_names() takes at least 1 positional argument (0 given) sage: k.normalize_names(1) *??????* * * - sage: *k.on* k.one k.one_element sage: k.one ? Type: builtin_function_or_method Base Class: <type 'builtin_function_or_method'> String Form: <built-in method one_element of FiniteField_givaro_with_category object at 0xbb0eaac> Namespace: Interactive Definition: k.one(self) Docstring: Return the one element of this ring (cached), if it exists. EXAMPLES: sage: ZZ.*one_element()* 1 sage: QQ.*one_element()* 1 sage: QQ['x'].*one_element()* 1 The result is cached: sage: ZZ.*one_element() *is *ZZ.one_element()* True - sage: *k.zero ? * Type: builtin_function_or_method Base Class: <type 'builtin_function_or_method'> String Form: <built-in method zero_element of FiniteField_givaro_with_category object at 0xbb0eaac> Namespace: Interactive Definition: k.zero(self) Docstring: Return the zero element of this ring (cached). EXAMPLES: sage: *ZZ.zero_element()* 0 sage: *QQ.zero_element()* 0 sage: QQ['x'].*zero_element()* 0 The result is cached: sage: ZZ.*zero_element()* is ZZ.*zero_element()* True Definition of the field: sage: R.<x>=ZZ[] sage: k=GF(2^8,name='a',modulus=x^8+x^4+x^3+x+1) -- To post to this group, send email to sage-support@googlegroups.com To unsubscribe from this group, send email to sage-support+unsubscr...@googlegroups.com For more options, visit this group at http://groups.google.com/group/sage-support URL: http://www.sagemath.org