Dear all,

1. Why important next functions?
k.a_times_b_minus_c
k.a_times_b_plus_c
k.c_minus_a_times_b
sage: k.some_elements ?  
...
       Returns a collection of elements of this finite field *for use 
in unit testing.*

Why this function are defined as public?

2. Also a few misunderstanding functions

   - sage: *k.cardinality* ? 
   Type: builtin_function_or_method
   Base Class: <type 'builtin_function_or_method'>
   String Form: <built-in method cardinality of 
   FiniteField_givaro_with_category object at 0xbb0eaac>
   Namespace: Interactive
   Definition: k.cardinality(self)
   Docstring:
          Return the order of this finite field (*same as self.order()*).
   
   - sage: *k.cayley_graph() *
   
   ---------------------------------------------------------------------------
   AttributeError                            Traceback (most recent call 
   last)
   
   /home/hamsin/<ipython console> in <module>()
   
   
/home/hamsin/bin/sage/local/lib/python2.7/site-packages/sage/categories/semigroups.pyc
 
   in cayley_graph(self, side, simple, elements, generators, connecting_set)
       284                 generators = connecting_set
       285             if generators is None:
   --> 286                 generators = self.semigroup_generators()
       287             if isinstance(generators, (list, tuple)):
       288                 generators = dict((self(g), self(g)) for g in 
   generators)
   
   
/home/hamsin/bin/sage/local/lib/python2.7/site-packages/sage/structure/parent.so
 
   in sage.structure.parent.Parent.__getattr__ (sage/structure/parent.c:6805)()
   
   
/home/hamsin/bin/sage/local/lib/python2.7/site-packages/sage/structure/parent.so
 
   in sage.structure.parent.getattr_from_other_class 
   (sage/structure/parent.c:3248)()
   
   AttributeError: 'FiniteField_givaro_with_category' object has no 
   attribute 'semigroup_generators'
   
   - sage: *k.has_base()*
   *True*
   sage: *k.has_base* ? 
   Type: builtin_function_or_method
   Base Class: <type 'builtin_function_or_method'>
   String Form: <built-in method has_base of 
   FiniteField_givaro_with_category object at 0xbb0eaac>
   Namespace: Interactive
   Definition: k.has_base(self, category=None)
   *??????*
   *
   *
   - sage: *k.ngens* *?*
   Type: builtin_function_or_method
   Base Class: <type 'builtin_function_or_method'>
   String Form: <built-in method ngens of FiniteField_givaro_with_category 
   object at 0xbb0eaac>
   Namespace: Interactive
   Definition: k.ngens(self)
   Docstring:
          The number of generators of the finite field. * Always 1.*
   *
   *
   - sage: *k.normalize_names ?* 
   Type: builtin_function_or_method
   Base Class: <type 'builtin_function_or_method'>
   String Form: <built-in method normalize_names of 
   FiniteField_givaro_with_category object at 0xbb0eaac>
   Namespace: Interactive
   Definition: k.normalize_names(self, ngens, names=None)
   
   sage: k.normalize_names()
   
   ---------------------------------------------------------------------------
   TypeError                                 Traceback (most recent call 
   last)
   
   /home/hamsin/<ipython console> in <module>()
   
   
/home/hamsin/bin/sage/local/lib/python2.7/site-packages/sage/structure/category_object.so
 
   in sage.structure.category_object.CategoryObject.normalize_names 
   (sage/structure/category_object.c:3939)()
   
   TypeError: normalize_names() takes at least 1 positional argument (0 
   given)
   sage: k.normalize_names(1)
   *??????*
   *
   *
   - sage: *k.on*
   k.one          k.one_element  
   sage: k.one ? 
   Type: builtin_function_or_method
   Base Class: <type 'builtin_function_or_method'>
   String Form: <built-in method one_element of 
   FiniteField_givaro_with_category object at 0xbb0eaac>
   Namespace: Interactive
   Definition: k.one(self)
   Docstring:
          Return the one element of this ring (cached), if it exists.
       
          EXAMPLES:
       
             sage: ZZ.*one_element()*
             1
             sage: QQ.*one_element()*
             1
             sage: QQ['x'].*one_element()*
             1
       
          The result is cached:
       
             sage: ZZ.*one_element() *is *ZZ.one_element()*
             True
   
   

   - sage: *k.zero ? *
   Type: builtin_function_or_method
   Base Class: <type 'builtin_function_or_method'>
   String Form: <built-in method zero_element of 
   FiniteField_givaro_with_category object at 0xbb0eaac>
   Namespace: Interactive
   Definition: k.zero(self)
   Docstring:
          Return the zero element of this ring (cached).
       
          EXAMPLES:
       
             sage: *ZZ.zero_element()*
             0
             sage: *QQ.zero_element()*
             0
             sage: QQ['x'].*zero_element()*
             0
       
          The result is cached:
       
             sage: ZZ.*zero_element()* is ZZ.*zero_element()*
             True
   
   

Definition of the field:
sage: R.<x>=ZZ[]
sage: k=GF(2^8,name='a',modulus=x^8+x^4+x^3+x+1)

-- 
To post to this group, send email to sage-support@googlegroups.com
To unsubscribe from this group, send email to 
sage-support+unsubscr...@googlegroups.com
For more options, visit this group at 
http://groups.google.com/group/sage-support
URL: http://www.sagemath.org

Reply via email to