On Dec 5, 10:04 am, achrzesz <achrz...@wp.pl> wrote: > On Dec 5, 5:31 am, Dan Drake <dr...@kaist.edu> wrote: > > > > > I keep wondering whether Sage is making a mistake, or I'm not > > understanding complex analysis. I'm a little afraid to learn the answer. > > :) > > > Take f(z) = (z-I)*(z-1)^2/(z-(-1/2-I/3)). It's analytic everywhere > > except at -1/2-I/3, where it has a simple pole. So, if I integrate over > > a circle centered at 0 of radius, say, 2, the answer should be > > > 2*pi*I*(residue of f at -1/2 - I/3), > > > which is pi*(181/27 + 19*I/36). However, when I try to do the contour > > integral, I get: > > > sage: integrate(f(2*exp(I*t)) * 2*I*exp(I*t), (t, 0, 2*pi)) > > 0 > > > even though the contour encloses the pole. It works if I center the > > circle around the pole: > > > sage: integrate(f(-1/2-I/3 + exp(I*t)) * I*exp(I*t), (t, 0, 2*pi)) > > (19/36*I + 181/27)*pi > > > and also if I integrate over the square with vertices 1+i, 1-i, -1-i, > > -1+i. What's wrong with the circle at the origin? > > > Note that Mathematica gets this right, although you need to ask for full > > simplification: with f[z_] = (z-I)*(z-1)^2/(z-(-1/2-I/3)), you get > > > In[5]:= Integrate[f[2*Exp[I*t]] * 2*I*Exp[I*t], {t, 0, 2*Pi}]//FullSimplify > > > 181 19 I > > Out[5]= (--- + ----) Pi > > 27 36 > > > Any ideas? > > > Dan > > > -- > > --- Dan Drake > > ----- http://mathsci.kaist.ac.kr/~drake > > ------- > > > signature.asc > > < 1KViewDownload > > sage: maxima('rectform(2*%pi*%i*residue((z-%i)*(z-1)^2/(z-(-1/2-%i/ > 3)),z,-1/2-%i/3))').sage() > (19/36*I + 181/27)*pi
sage: f(z) = (z-I)*(z-1)^2/(z-(-1/2-I/3)) sage: 2*pi*I*f(z).maxima_methods().residue(z,-1/2 - I/3) (19/36*I + 181/27)*pi -- To post to this group, send email to sage-support@googlegroups.com To unsubscribe from this group, send email to sage-support+unsubscr...@googlegroups.com For more options, visit this group at http://groups.google.com/group/sage-support URL: http://www.sagemath.org