On Dec 5, 5:31 am, Dan Drake <dr...@kaist.edu> wrote: > I keep wondering whether Sage is making a mistake, or I'm not > understanding complex analysis. I'm a little afraid to learn the answer. > :) > > Take f(z) = (z-I)*(z-1)^2/(z-(-1/2-I/3)). It's analytic everywhere > except at -1/2-I/3, where it has a simple pole. So, if I integrate over > a circle centered at 0 of radius, say, 2, the answer should be > > 2*pi*I*(residue of f at -1/2 - I/3), > > which is pi*(181/27 + 19*I/36). However, when I try to do the contour > integral, I get: > > sage: integrate(f(2*exp(I*t)) * 2*I*exp(I*t), (t, 0, 2*pi)) > 0 > > even though the contour encloses the pole. It works if I center the > circle around the pole: > > sage: integrate(f(-1/2-I/3 + exp(I*t)) * I*exp(I*t), (t, 0, 2*pi)) > (19/36*I + 181/27)*pi > > and also if I integrate over the square with vertices 1+i, 1-i, -1-i, > -1+i. What's wrong with the circle at the origin? > > Note that Mathematica gets this right, although you need to ask for full > simplification: with f[z_] = (z-I)*(z-1)^2/(z-(-1/2-I/3)), you get > > In[5]:= Integrate[f[2*Exp[I*t]] * 2*I*Exp[I*t], {t, 0, 2*Pi}]//FullSimplify > > 181 19 I > Out[5]= (--- + ----) Pi > 27 36 > > Any ideas? > > Dan > > -- > --- Dan Drake > ----- http://mathsci.kaist.ac.kr/~drake > ------- > > signature.asc > < 1KViewDownload
Note that pari has a good approximate solution: sage: pari('f(z) = (z-I)*(z-1)^2/(z-(-1/2-I/3))') (z)->(z-I)*(z-1)^2/(z-(-1/2-I/3)) sage: 2*n(pi)*I*pari('intcirc(z=0,2,f(z))') 21.0603063073982 + 1.65806278939461*I sage: CC(pi*(181/27 + 19*I/36)) 21.0603063073982 + 1.65806278939461*I Andrzej Chrzeszczyk -- To post to this group, send email to sage-support@googlegroups.com To unsubscribe from this group, send email to sage-support+unsubscr...@googlegroups.com For more options, visit this group at http://groups.google.com/group/sage-support URL: http://www.sagemath.org