<html><div class="math">\left(\begin{array}{rrrr}
-e^{-\frac{1}{2} \, a k} & 0 & \sin\left(-\frac{1}{2} \, a l\right) &
\cos\left(-\frac{1}{2} \, a l\right) \\
0 & e^{-\frac{1}{2} \, a k} & -\sin\left(\frac{1}{2} \, a l\right) & -
\cos\left(\frac{1}{2} \, a l\right) \\
-k e^{-\frac{1}{2} \, a k} & 0 & l \cos\left(-\frac{1}{2} \, a l
\right) & -l \sin\left(-\frac{1}{2} \, a l\right) \\
0 & k e^{-\frac{1}{2} \, a k} & l \cos\left(\frac{1}{2} \, a l\right)
& -l \sin\left(\frac{1}{2} \, a l\right)
\end{array}\right)</div></html>

That's the matrix I'm trying to solve (if this shows up)

sage: mat1 = Matrix(4,4,[[-e^-((1/2)*a*k),0,sin(-(1/2)*a*l),cos(-(1/2)
*a*l)],[0,e^(-(1/2)*a*k),-sin((1/2)*a*l),-cos((1/2)*a*l)],[-k*e^-((1/2)
*a*k),0,l*cos(-(1/2)*a*l),-l*sin(-(1/2)*a*l)],[0,k*e^(-(1/2)*a*k),l*cos
((1/2)*a*l),-l*sin((1/2)*a*l)]])


On Oct 5, 7:32 pm, William Stein <wst...@gmail.com> wrote:
> On Mon, Oct 5, 2009 at 4:28 PM, Paul <pabb...@gmail.com> wrote:
>
> > I'm trying to run sage matrix operations (ex, solve, eigenvalues,
> > eigenvectors) on a matrix constant constants variables (variables I've
> > defined that do not yet have a numeric value), but the ops seem to
> > either fail, or produce an unreadable amount of latex that jsmath
> > fails to parse, and I'm pretty sure does not give the correct answer
> > (or at least not a simplified form).
>
> > Is this a limitation of sage, or am I doing something wrong?
>
> Post examples.
>
> William
--~--~---------~--~----~------------~-------~--~----~
To post to this group, send email to sage-support@googlegroups.com
To unsubscribe from this group, send email to 
sage-support-unsubscr...@googlegroups.com
For more options, visit this group at 
http://groups.google.com/group/sage-support
URL: http://www.sagemath.org
-~----------~----~----~----~------~----~------~--~---

Reply via email to