<html><div class="math">\left(\begin{array}{rrrr} -e^{-\frac{1}{2} \, a k} & 0 & \sin\left(-\frac{1}{2} \, a l\right) & \cos\left(-\frac{1}{2} \, a l\right) \\ 0 & e^{-\frac{1}{2} \, a k} & -\sin\left(\frac{1}{2} \, a l\right) & - \cos\left(\frac{1}{2} \, a l\right) \\ -k e^{-\frac{1}{2} \, a k} & 0 & l \cos\left(-\frac{1}{2} \, a l \right) & -l \sin\left(-\frac{1}{2} \, a l\right) \\ 0 & k e^{-\frac{1}{2} \, a k} & l \cos\left(\frac{1}{2} \, a l\right) & -l \sin\left(\frac{1}{2} \, a l\right) \end{array}\right)</div></html>
That's the matrix I'm trying to solve (if this shows up) sage: mat1 = Matrix(4,4,[[-e^-((1/2)*a*k),0,sin(-(1/2)*a*l),cos(-(1/2) *a*l)],[0,e^(-(1/2)*a*k),-sin((1/2)*a*l),-cos((1/2)*a*l)],[-k*e^-((1/2) *a*k),0,l*cos(-(1/2)*a*l),-l*sin(-(1/2)*a*l)],[0,k*e^(-(1/2)*a*k),l*cos ((1/2)*a*l),-l*sin((1/2)*a*l)]]) On Oct 5, 7:32 pm, William Stein <wst...@gmail.com> wrote: > On Mon, Oct 5, 2009 at 4:28 PM, Paul <pabb...@gmail.com> wrote: > > > I'm trying to run sage matrix operations (ex, solve, eigenvalues, > > eigenvectors) on a matrix constant constants variables (variables I've > > defined that do not yet have a numeric value), but the ops seem to > > either fail, or produce an unreadable amount of latex that jsmath > > fails to parse, and I'm pretty sure does not give the correct answer > > (or at least not a simplified form). > > > Is this a limitation of sage, or am I doing something wrong? > > Post examples. > > William --~--~---------~--~----~------------~-------~--~----~ To post to this group, send email to sage-support@googlegroups.com To unsubscribe from this group, send email to sage-support-unsubscr...@googlegroups.com For more options, visit this group at http://groups.google.com/group/sage-support URL: http://www.sagemath.org -~----------~----~----~----~------~----~------~--~---