Hi!
I can't sleep, when fearing PolyBoRi could calculate wrong:
Actually, it's probably just about the wrapper.
My CVS, which is very much the same as 0.6.3 gives me:

l="a111,a112,a121,a122,b111,b112,b211,b212,c111,c112".split(",")

In [2]:declare_ring(l, globals())
Out[2]:<polybori.dynamic.PyPolyBoRi.Ring object at 0xb02578>

In [3]:ideal=[a111 * b111 * c111 + a112 * b112 * c112 + 1 , a111 *
b211 * c111 +
   ...: a112 * b212 * c112 + 0 , a121 * b111 * c111 + a122 * b112 *
c112 ,    ...: a121 * b211 * c111 + a122 * b212 * c112 + 1]
In [4]:grogroebner/CVS             groebner/libgroebner.a   groebner/
src
groebner/doc             groebner/libgroebner.so  groebner_basis

In [4]:groebner_basis(ideal)
Out[4]:
[b211*b212 + b211 + b212 + 1,
 b112*b212 + b112 + b212 + 1,
 b111*b212 + b112*b211 + 1,
 b111*b211 + b111 + b211 + 1,
 b111*b112 + b111 + b112 + 1,
 a122 + b111,
 a121 + b112,
 a112 + b211,
 a111 + b212,
 c111 + 1,
 c112 + 1]

Tomorrow, I'll have a look at the bigger system, if there are some
tweaks.
Can you send it as proper attachment it to me? What kind of
application is it?
Michael

On 3 Aug., 21:54, lesshaste <drr...@gmail.com> wrote:
> Hi,
>
> On Aug 3, 7:39 pm, Martin Albrecht <m...@informatik.uni-bremen.de>
> wrote:
>
>
>
> > > The problem in my case is really one of scale. I have put a larger
> > > example at the bottom of this message.  When I try to find the
> > > groebner basis in sage 4.1 (which seems to use polybori-0.5rc.p8) the
> > > memory usage goes over 1.6GB and then sage crashes.  It is possible
> > > that it just isn't realistic to solve it using Groebner Bases.
> > > However, I should say that when reformulated as a SAT solving problem,
> > > the standard off the shelf minisat 2.0 code can solve it in 0.04
> > > seconds.  This is despite the fact that minisat only takes CNF as the
> > > input which means that all the structure of the problem has been
> > > removed before it sees it.
>
> > Hi Raphael,
>
> > note that Gröbner basis methods will always return a complete algebraic
> > description of the solution set while SAT solving approaches terminate once
> > *one* solution is found. Thus if there are many solutions they have an
> > advantage. You can try to guess some variables in order to improve the
> > efficiency of the Gröbner basis based methods.
>
> You are quite right of course. My example wasn't fair as in this case
> there are in fact a really large number of solutions.
>
> However ( :) ) attached below is another slightly smaller example
> where there is in fact no solution, making it a fairer comparison I
> hope.  It takes minisat 2 mins 22 seconds on my computer to work that
> out.  Using polybori in sage as above takes 700-800MB of RAM and
> doesn't terminate in the hour or so I gave it.  I only mention this in
> case anyone working on polybori is interested in specific examples.
>
> Raphael
>
> ---- attached system of polys with no solution ---
> R.<a111,a112,a113,a114,a115,a116,a121,a122,a123,a124,a125,a126,a211,a212,a2 
> 13,a214,a215,a216,a221,a222,a223,a224,a225,a226,b111,b112,b113,b114,b115,b1 
> 16,b121,b122,b123,b124,b125,b126,b211,b212,b213,b214,b215,b216,b221,b222,b2 
> 23,b224,b225,b226,c111,c112,c113,c114,c115,c116,c121,c122,c123,c124,c125,c1 
> 26,c211,c212,c213,c214,c215,c216,c221,c222,c223,c224,c225,c226
>
> > = BooleanPolynomialRing(order='lex')
>
> I = ( a111 * b111 * c111 + a112 * b112 * c112 + a113 * b113 * c113 +
> a114 * b114 * c114 + a115 * b115 * c115 + a116 * b116 * c116 -1, a111
> * b111 * c121 + a112 * b112 * c122 + a113 * b113 * c123 + a114 * b114
> * c124 + a115 * b115 * c125 + a116 * b116 * c126 , a111 * b111 * c211
> + a112 * b112 * c212 + a113 * b113 * c213 + a114 * b114 * c214 + a115
> * b115 * c215 + a116 * b116 * c216 , a111 * b111 * c221 + a112 * b112
> * c222 + a113 * b113 * c223 + a114 * b114 * c224 + a115 * b115 * c225
> + a116 * b116 * c226 , a111 * b121 * c111 + a112 * b122 * c112 + a113
> * b123 * c113 + a114 * b124 * c114 + a115 * b125 * c115 + a116 * b126
> * c116 , a111 * b121 * c121 + a112 * b122 * c122 + a113 * b123 * c123
> + a114 * b124 * c124 + a115 * b125 * c125 + a116 * b126 * c126 , a111
> * b121 * c211 + a112 * b122 * c212 + a113 * b123 * c213 + a114 * b124
> * c214 + a115 * b125 * c215 + a116 * b126 * c216 -1, a111 * b121 *
> c221 + a112 * b122 * c222 + a113 * b123 * c223 + a114 * b124 * c224 +
> a115 * b125 * c225 + a116 * b126 * c226 , a111 * b211 * c111 + a112 *
> b212 * c112 + a113 * b213 * c113 + a114 * b214 * c114 + a115 * b215 *
> c115 + a116 * b216 * c116 , a111 * b211 * c121 + a112 * b212 * c122 +
> a113 * b213 * c123 + a114 * b214 * c124 + a115 * b215 * c125 + a116 *
> b216 * c126 , a111 * b211 * c211 + a112 * b212 * c212 + a113 * b213 *
> c213 + a114 * b214 * c214 + a115 * b215 * c215 + a116 * b216 * c216 ,
> a111 * b211 * c221 + a112 * b212 * c222 + a113 * b213 * c223 + a114 *
> b214 * c224 + a115 * b215 * c225 + a116 * b216 * c226 , a111 * b221 *
> c111 + a112 * b222 * c112 + a113 * b223 * c113 + a114 * b224 * c114 +
> a115 * b225 * c115 + a116 * b226 * c116 , a111 * b221 * c121 + a112 *
> b222 * c122 + a113 * b223 * c123 + a114 * b224 * c124 + a115 * b225 *
> c125 + a116 * b226 * c126 , a111 * b221 * c211 + a112 * b222 * c212 +
> a113 * b223 * c213 + a114 * b224 * c214 + a115 * b225 * c215 + a116 *
> b226 * c216 , a111 * b221 * c221 + a112 * b222 * c222 + a113 * b223 *
> c223 + a114 * b224 * c224 + a115 * b225 * c225 + a116 * b226 * c226 ,
> a121 * b111 * c111 + a122 * b112 * c112 + a123 * b113 * c113 + a124 *
> b114 * c114 + a125 * b115 * c115 + a126 * b116 * c116 , a121 * b111 *
> c121 + a122 * b112 * c122 + a123 * b113 * c123 + a124 * b114 * c124 +
> a125 * b115 * c125 + a126 * b116 * c126 , a121 * b111 * c211 + a122 *
> b112 * c212 + a123 * b113 * c213 + a124 * b114 * c214 + a125 * b115 *
> c215 + a126 * b116 * c216 , a121 * b111 * c221 + a122 * b112 * c222 +
> a123 * b113 * c223 + a124 * b114 * c224 + a125 * b115 * c225 + a126 *
> b116 * c226 , a121 * b121 * c111 + a122 * b122 * c112 + a123 * b123 *
> c113 + a124 * b124 * c114 + a125 * b125 * c115 + a126 * b126 * c116 ,
> a121 * b121 * c121 + a122 * b122 * c122 + a123 * b123 * c123 + a124 *
> b124 * c124 + a125 * b125 * c125 + a126 * b126 * c126 , a121 * b121 *
> c211 + a122 * b122 * c212 + a123 * b123 * c213 + a124 * b124 * c214 +
> a125 * b125 * c215 + a126 * b126 * c216 , a121 * b121 * c221 + a122 *
> b122 * c222 + a123 * b123 * c223 + a124 * b124 * c224 + a125 * b125 *
> c225 + a126 * b126 * c226 , a121 * b211 * c111 + a122 * b212 * c112 +
> a123 * b213 * c113 + a124 * b214 * c114 + a125 * b215 * c115 + a126 *
> b216 * c116 -1, a121 * b211 * c121 + a122 * b212 * c122 + a123 * b213
> * c123 + a124 * b214 * c124 + a125 * b215 * c125 + a126 * b216 *
> c126 , a121 * b211 * c211 + a122 * b212 * c212 + a123 * b213 * c213 +
> a124 * b214 * c214 + a125 * b215 * c215 + a126 * b216 * c216 , a121 *
> b211 * c221 + a122 * b212 * c222 + a123 * b213 * c223 + a124 * b214 *
> c224 + a125 * b215 * c225 + a126 * b216 * c226 , a121 * b221 * c111 +
> a122 * b222 * c112 + a123 * b223 * c113 + a124 * b224 * c114 + a125 *
> b225 * c115 + a126 * b226 * c116 , a121 * b221 * c121 + a122 * b222 *
> c122 + a123 * b223 * c123 + a124 * b224 * c124 + a125 * b225 * c125 +
> a126 * b226 * c126 , a121 * b221 * c211 + a122 * b222 * c212 + a123 *
> b223 * c213 + a124 * b224 * c214 + a125 * b225 * c215 + a126 * b226 *
> c216 -1, a121 * b221 * c221 + a122 * b222 * c222 + a123 * b223 * c223
> + a124 * b224 * c224 + a125 * b225 * c225 + a126 * b226 * c226 , a211
> * b111 * c111 + a212 * b112 * c112 + a213 * b113 * c113 + a214 * b114
> * c114 + a215 * b115 * c115 + a216 * b116 * c116 , a211 * b111 * c121
> + a212 * b112 * c122 + a213 * b113 * c123 + a214 * b114 * c124 + a215
> * b115 * c125 + a216 * b116 * c126 -1, a211 * b111 * c211 + a212 *
> b112 * c212 + a213 * b113 * c213 + a214 * b114 * c214 + a215 * b115 *
> c215 + a216 * b116 * c216 , a211 * b111 * c221 + a212 * b112 * c222 +
> a213 * b113 * c223 + a214 * b114 * c224 + a215 * b115 * c225 + a216 *
> b116 * c226 , a211 * b121 * c111 + a212 * b122 * c112 + a213 * b123 *
> c113 + a214 * b124 * c114 + a215 * b125 * c115 + a216 * b126 * c116 ,
> a211 * b121 * c121 + a212 * b122 * c122 + a213 * b123 * c123 + a214 *
> b124 * c124 + a215 * b125 * c125 + a216 * b126 * c126 , a211 * b121 *
> c211 + a212 * b122 * c212 + a213 * b123 * c213 + a214 * b124 * c214 +
> a215 * b125 * c215 + a216 * b126 * c216 , a211 * b121 * c221 + a212 *
> b122 * c222 + a213 * b123 * c223 + a214 * b124 * c224 + a215 * b125 *
> c225 + a216 * b126 * c226 -1, a211 * b211 * c111 + a212 * b212 * c112
> + a213 * b213 * c113 + a214 * b214 * c114 + a215 * b215 * c115 + a216
> * b216 * c116 , a211 * b211 * c121 + a212 * b212 * c122 + a213 * b213
> * c123 + a214 * b214 * c124 + a215 * b215 * c125 + a216 * b216 *
> c126 , a211 * b211 * c211 + a212 * b212 * c212 + a213 * b213 * c213 +
> a214 * b214 * c214 + a215 * b215 * c215 + a216 * b216 * c216 , a211 *
> b211 * c221 + a212 * b212 * c222 + a213 * b213 * c223 + a214 * b214 *
> c224 + a215 * b215 * c225 + a216 * b216 * c226 , a211 * b221 * c111 +
> a212 * b222 * c112 + a213 * b223 * c113 + a214 * b224 * c114 + a215 *
> b225 * c115 + a216 * b226 * c116 , a211 * b221 * c121 + a212 * b222 *
> c122 + a213 * b223 * c123 + a214 * b224 * c124 + a215 * b225 * c125 +
> a216 * b226 * c126 , a211 * b221 * c211 + a212 * b222 * c212 + a213 *
> b223 * c213 + a214 * b224 * c214 + a215 * b225 * c215 + a216 * b226 *
> c216 , a211 * b221 * c221 + a212 * b222 * c222 + a213 * b223 * c223 +
> a214 * b224 * c224 + a215 * b225 * c225 + a216 * b226 * c226 , a221 *
> b111 * c111 + a222 * b112 * c112 + a223 * b113 * c113 + a224 * b114 *
> c114 + a225 * b115 * c115 + a226 * b116 * c116 , a221 * b111 * c121 +
> a222 * b112 * c122 + a223 * b113 * c123 + a224 * b114 * c124 + a225 *
> b115 * c125 + a226 * b116 * c126 , a221 * b111 * c211 + a222 * b112 *
> c212 + a223 * b113 * c213 + a224 * b114 * c214 + a225 * b115 * c215 +
> a226 * b116 * c216 , a221 * b111 * c221 + a222 * b112 * c222 + a223 *
> b113 * c223 + a224 * b114 * c224 + a225 * b115 * c225 + a226 * b116 *
> c226 , a221 * b121 * c111 + a222 * b122 * c112 + a223 * b123 * c113 +
> a224 * b124 * c114 + a225 * b125 * c115 + a226 * b126 * c116 , a221 *
> b121 * c121 + a222 * b122 * c122 + a223 * b123 * c123 + a224 * b124 *
> c124 + a225 * b125 * c125 + a226 * b126 * c126 , a221 * b121 * c211 +
> a222 * b122 * c212 + a223 * b123 * c213 + a224 * b124 * c214 + a225 *
> b125 * c215 + a226 * b126 * c216 , a221 * b121 * c221 + a222 * b122 *
> c222 + a223 * b123 * c223 + a224 * b124 * c224 + a225 * b125 * c225 +
> a226 * b126 * c226 , a221 * b211 * c111 + a222 * b212 * c112 + a223 *
> b213 * c113 + a224 * b214 * c114 + a225 * b215 * c115 + a226 * b216 *
> c116 , a221 * b211 * c121 + a222 * b212 * c122 + a223 * b213 * c123 +
> a224 * b214 * c124 + a225 * b215 * c125 + a226 * b216 * c126 -1, a221
> * b211 * c211 + a222 * b212 * c212 + a223 * b213 * c213 + a224 * b214
> * c214 + a225 * b215 * c215 + a226 * b216 * c216 , a221 * b211 * c221
> + a222 * b212 * c222 + a223 * b213 * c223 + a224 * b214 * c224 + a225
> * b215 * c225 + a226 * b216 * c226 , a221 * b221 * c111 + a222 * b222
> * c112 + a223 * b223 * c113 + a224 * b224 * c114 + a225 * b225 * c115
> + a226 * b226 * c116 , a221 * b221 * c121 + a222 * ...
>
> Erfahren Sie mehr »
--~--~---------~--~----~------------~-------~--~----~
To post to this group, send email to sage-support@googlegroups.com
To unsubscribe from this group, send email to 
sage-support-unsubscr...@googlegroups.com
For more options, visit this group at 
http://groups.google.com/group/sage-support
URLs: http://www.sagemath.org
-~----------~----~----~----~------~----~------~--~---

Reply via email to