Hi! I can't sleep, when fearing PolyBoRi could calculate wrong: Actually, it's probably just about the wrapper. My CVS, which is very much the same as 0.6.3 gives me:
l="a111,a112,a121,a122,b111,b112,b211,b212,c111,c112".split(",") In [2]:declare_ring(l, globals()) Out[2]:<polybori.dynamic.PyPolyBoRi.Ring object at 0xb02578> In [3]:ideal=[a111 * b111 * c111 + a112 * b112 * c112 + 1 , a111 * b211 * c111 + ...: a112 * b212 * c112 + 0 , a121 * b111 * c111 + a122 * b112 * c112 , ...: a121 * b211 * c111 + a122 * b212 * c112 + 1] In [4]:grogroebner/CVS groebner/libgroebner.a groebner/ src groebner/doc groebner/libgroebner.so groebner_basis In [4]:groebner_basis(ideal) Out[4]: [b211*b212 + b211 + b212 + 1, b112*b212 + b112 + b212 + 1, b111*b212 + b112*b211 + 1, b111*b211 + b111 + b211 + 1, b111*b112 + b111 + b112 + 1, a122 + b111, a121 + b112, a112 + b211, a111 + b212, c111 + 1, c112 + 1] Tomorrow, I'll have a look at the bigger system, if there are some tweaks. Can you send it as proper attachment it to me? What kind of application is it? Michael On 3 Aug., 21:54, lesshaste <drr...@gmail.com> wrote: > Hi, > > On Aug 3, 7:39 pm, Martin Albrecht <m...@informatik.uni-bremen.de> > wrote: > > > > > > The problem in my case is really one of scale. I have put a larger > > > example at the bottom of this message. When I try to find the > > > groebner basis in sage 4.1 (which seems to use polybori-0.5rc.p8) the > > > memory usage goes over 1.6GB and then sage crashes. It is possible > > > that it just isn't realistic to solve it using Groebner Bases. > > > However, I should say that when reformulated as a SAT solving problem, > > > the standard off the shelf minisat 2.0 code can solve it in 0.04 > > > seconds. This is despite the fact that minisat only takes CNF as the > > > input which means that all the structure of the problem has been > > > removed before it sees it. > > > Hi Raphael, > > > note that Gröbner basis methods will always return a complete algebraic > > description of the solution set while SAT solving approaches terminate once > > *one* solution is found. Thus if there are many solutions they have an > > advantage. You can try to guess some variables in order to improve the > > efficiency of the Gröbner basis based methods. > > You are quite right of course. My example wasn't fair as in this case > there are in fact a really large number of solutions. > > However ( :) ) attached below is another slightly smaller example > where there is in fact no solution, making it a fairer comparison I > hope. It takes minisat 2 mins 22 seconds on my computer to work that > out. Using polybori in sage as above takes 700-800MB of RAM and > doesn't terminate in the hour or so I gave it. I only mention this in > case anyone working on polybori is interested in specific examples. > > Raphael > > ---- attached system of polys with no solution --- > R.<a111,a112,a113,a114,a115,a116,a121,a122,a123,a124,a125,a126,a211,a212,a2 > 13,a214,a215,a216,a221,a222,a223,a224,a225,a226,b111,b112,b113,b114,b115,b1 > 16,b121,b122,b123,b124,b125,b126,b211,b212,b213,b214,b215,b216,b221,b222,b2 > 23,b224,b225,b226,c111,c112,c113,c114,c115,c116,c121,c122,c123,c124,c125,c1 > 26,c211,c212,c213,c214,c215,c216,c221,c222,c223,c224,c225,c226 > > > = BooleanPolynomialRing(order='lex') > > I = ( a111 * b111 * c111 + a112 * b112 * c112 + a113 * b113 * c113 + > a114 * b114 * c114 + a115 * b115 * c115 + a116 * b116 * c116 -1, a111 > * b111 * c121 + a112 * b112 * c122 + a113 * b113 * c123 + a114 * b114 > * c124 + a115 * b115 * c125 + a116 * b116 * c126 , a111 * b111 * c211 > + a112 * b112 * c212 + a113 * b113 * c213 + a114 * b114 * c214 + a115 > * b115 * c215 + a116 * b116 * c216 , a111 * b111 * c221 + a112 * b112 > * c222 + a113 * b113 * c223 + a114 * b114 * c224 + a115 * b115 * c225 > + a116 * b116 * c226 , a111 * b121 * c111 + a112 * b122 * c112 + a113 > * b123 * c113 + a114 * b124 * c114 + a115 * b125 * c115 + a116 * b126 > * c116 , a111 * b121 * c121 + a112 * b122 * c122 + a113 * b123 * c123 > + a114 * b124 * c124 + a115 * b125 * c125 + a116 * b126 * c126 , a111 > * b121 * c211 + a112 * b122 * c212 + a113 * b123 * c213 + a114 * b124 > * c214 + a115 * b125 * c215 + a116 * b126 * c216 -1, a111 * b121 * > c221 + a112 * b122 * c222 + a113 * b123 * c223 + a114 * b124 * c224 + > a115 * b125 * c225 + a116 * b126 * c226 , a111 * b211 * c111 + a112 * > b212 * c112 + a113 * b213 * c113 + a114 * b214 * c114 + a115 * b215 * > c115 + a116 * b216 * c116 , a111 * b211 * c121 + a112 * b212 * c122 + > a113 * b213 * c123 + a114 * b214 * c124 + a115 * b215 * c125 + a116 * > b216 * c126 , a111 * b211 * c211 + a112 * b212 * c212 + a113 * b213 * > c213 + a114 * b214 * c214 + a115 * b215 * c215 + a116 * b216 * c216 , > a111 * b211 * c221 + a112 * b212 * c222 + a113 * b213 * c223 + a114 * > b214 * c224 + a115 * b215 * c225 + a116 * b216 * c226 , a111 * b221 * > c111 + a112 * b222 * c112 + a113 * b223 * c113 + a114 * b224 * c114 + > a115 * b225 * c115 + a116 * b226 * c116 , a111 * b221 * c121 + a112 * > b222 * c122 + a113 * b223 * c123 + a114 * b224 * c124 + a115 * b225 * > c125 + a116 * b226 * c126 , a111 * b221 * c211 + a112 * b222 * c212 + > a113 * b223 * c213 + a114 * b224 * c214 + a115 * b225 * c215 + a116 * > b226 * c216 , a111 * b221 * c221 + a112 * b222 * c222 + a113 * b223 * > c223 + a114 * b224 * c224 + a115 * b225 * c225 + a116 * b226 * c226 , > a121 * b111 * c111 + a122 * b112 * c112 + a123 * b113 * c113 + a124 * > b114 * c114 + a125 * b115 * c115 + a126 * b116 * c116 , a121 * b111 * > c121 + a122 * b112 * c122 + a123 * b113 * c123 + a124 * b114 * c124 + > a125 * b115 * c125 + a126 * b116 * c126 , a121 * b111 * c211 + a122 * > b112 * c212 + a123 * b113 * c213 + a124 * b114 * c214 + a125 * b115 * > c215 + a126 * b116 * c216 , a121 * b111 * c221 + a122 * b112 * c222 + > a123 * b113 * c223 + a124 * b114 * c224 + a125 * b115 * c225 + a126 * > b116 * c226 , a121 * b121 * c111 + a122 * b122 * c112 + a123 * b123 * > c113 + a124 * b124 * c114 + a125 * b125 * c115 + a126 * b126 * c116 , > a121 * b121 * c121 + a122 * b122 * c122 + a123 * b123 * c123 + a124 * > b124 * c124 + a125 * b125 * c125 + a126 * b126 * c126 , a121 * b121 * > c211 + a122 * b122 * c212 + a123 * b123 * c213 + a124 * b124 * c214 + > a125 * b125 * c215 + a126 * b126 * c216 , a121 * b121 * c221 + a122 * > b122 * c222 + a123 * b123 * c223 + a124 * b124 * c224 + a125 * b125 * > c225 + a126 * b126 * c226 , a121 * b211 * c111 + a122 * b212 * c112 + > a123 * b213 * c113 + a124 * b214 * c114 + a125 * b215 * c115 + a126 * > b216 * c116 -1, a121 * b211 * c121 + a122 * b212 * c122 + a123 * b213 > * c123 + a124 * b214 * c124 + a125 * b215 * c125 + a126 * b216 * > c126 , a121 * b211 * c211 + a122 * b212 * c212 + a123 * b213 * c213 + > a124 * b214 * c214 + a125 * b215 * c215 + a126 * b216 * c216 , a121 * > b211 * c221 + a122 * b212 * c222 + a123 * b213 * c223 + a124 * b214 * > c224 + a125 * b215 * c225 + a126 * b216 * c226 , a121 * b221 * c111 + > a122 * b222 * c112 + a123 * b223 * c113 + a124 * b224 * c114 + a125 * > b225 * c115 + a126 * b226 * c116 , a121 * b221 * c121 + a122 * b222 * > c122 + a123 * b223 * c123 + a124 * b224 * c124 + a125 * b225 * c125 + > a126 * b226 * c126 , a121 * b221 * c211 + a122 * b222 * c212 + a123 * > b223 * c213 + a124 * b224 * c214 + a125 * b225 * c215 + a126 * b226 * > c216 -1, a121 * b221 * c221 + a122 * b222 * c222 + a123 * b223 * c223 > + a124 * b224 * c224 + a125 * b225 * c225 + a126 * b226 * c226 , a211 > * b111 * c111 + a212 * b112 * c112 + a213 * b113 * c113 + a214 * b114 > * c114 + a215 * b115 * c115 + a216 * b116 * c116 , a211 * b111 * c121 > + a212 * b112 * c122 + a213 * b113 * c123 + a214 * b114 * c124 + a215 > * b115 * c125 + a216 * b116 * c126 -1, a211 * b111 * c211 + a212 * > b112 * c212 + a213 * b113 * c213 + a214 * b114 * c214 + a215 * b115 * > c215 + a216 * b116 * c216 , a211 * b111 * c221 + a212 * b112 * c222 + > a213 * b113 * c223 + a214 * b114 * c224 + a215 * b115 * c225 + a216 * > b116 * c226 , a211 * b121 * c111 + a212 * b122 * c112 + a213 * b123 * > c113 + a214 * b124 * c114 + a215 * b125 * c115 + a216 * b126 * c116 , > a211 * b121 * c121 + a212 * b122 * c122 + a213 * b123 * c123 + a214 * > b124 * c124 + a215 * b125 * c125 + a216 * b126 * c126 , a211 * b121 * > c211 + a212 * b122 * c212 + a213 * b123 * c213 + a214 * b124 * c214 + > a215 * b125 * c215 + a216 * b126 * c216 , a211 * b121 * c221 + a212 * > b122 * c222 + a213 * b123 * c223 + a214 * b124 * c224 + a215 * b125 * > c225 + a216 * b126 * c226 -1, a211 * b211 * c111 + a212 * b212 * c112 > + a213 * b213 * c113 + a214 * b214 * c114 + a215 * b215 * c115 + a216 > * b216 * c116 , a211 * b211 * c121 + a212 * b212 * c122 + a213 * b213 > * c123 + a214 * b214 * c124 + a215 * b215 * c125 + a216 * b216 * > c126 , a211 * b211 * c211 + a212 * b212 * c212 + a213 * b213 * c213 + > a214 * b214 * c214 + a215 * b215 * c215 + a216 * b216 * c216 , a211 * > b211 * c221 + a212 * b212 * c222 + a213 * b213 * c223 + a214 * b214 * > c224 + a215 * b215 * c225 + a216 * b216 * c226 , a211 * b221 * c111 + > a212 * b222 * c112 + a213 * b223 * c113 + a214 * b224 * c114 + a215 * > b225 * c115 + a216 * b226 * c116 , a211 * b221 * c121 + a212 * b222 * > c122 + a213 * b223 * c123 + a214 * b224 * c124 + a215 * b225 * c125 + > a216 * b226 * c126 , a211 * b221 * c211 + a212 * b222 * c212 + a213 * > b223 * c213 + a214 * b224 * c214 + a215 * b225 * c215 + a216 * b226 * > c216 , a211 * b221 * c221 + a212 * b222 * c222 + a213 * b223 * c223 + > a214 * b224 * c224 + a215 * b225 * c225 + a216 * b226 * c226 , a221 * > b111 * c111 + a222 * b112 * c112 + a223 * b113 * c113 + a224 * b114 * > c114 + a225 * b115 * c115 + a226 * b116 * c116 , a221 * b111 * c121 + > a222 * b112 * c122 + a223 * b113 * c123 + a224 * b114 * c124 + a225 * > b115 * c125 + a226 * b116 * c126 , a221 * b111 * c211 + a222 * b112 * > c212 + a223 * b113 * c213 + a224 * b114 * c214 + a225 * b115 * c215 + > a226 * b116 * c216 , a221 * b111 * c221 + a222 * b112 * c222 + a223 * > b113 * c223 + a224 * b114 * c224 + a225 * b115 * c225 + a226 * b116 * > c226 , a221 * b121 * c111 + a222 * b122 * c112 + a223 * b123 * c113 + > a224 * b124 * c114 + a225 * b125 * c115 + a226 * b126 * c116 , a221 * > b121 * c121 + a222 * b122 * c122 + a223 * b123 * c123 + a224 * b124 * > c124 + a225 * b125 * c125 + a226 * b126 * c126 , a221 * b121 * c211 + > a222 * b122 * c212 + a223 * b123 * c213 + a224 * b124 * c214 + a225 * > b125 * c215 + a226 * b126 * c216 , a221 * b121 * c221 + a222 * b122 * > c222 + a223 * b123 * c223 + a224 * b124 * c224 + a225 * b125 * c225 + > a226 * b126 * c226 , a221 * b211 * c111 + a222 * b212 * c112 + a223 * > b213 * c113 + a224 * b214 * c114 + a225 * b215 * c115 + a226 * b216 * > c116 , a221 * b211 * c121 + a222 * b212 * c122 + a223 * b213 * c123 + > a224 * b214 * c124 + a225 * b215 * c125 + a226 * b216 * c126 -1, a221 > * b211 * c211 + a222 * b212 * c212 + a223 * b213 * c213 + a224 * b214 > * c214 + a225 * b215 * c215 + a226 * b216 * c216 , a221 * b211 * c221 > + a222 * b212 * c222 + a223 * b213 * c223 + a224 * b214 * c224 + a225 > * b215 * c225 + a226 * b216 * c226 , a221 * b221 * c111 + a222 * b222 > * c112 + a223 * b223 * c113 + a224 * b224 * c114 + a225 * b225 * c115 > + a226 * b226 * c116 , a221 * b221 * c121 + a222 * ... > > Erfahren Sie mehr » --~--~---------~--~----~------------~-------~--~----~ To post to this group, send email to sage-support@googlegroups.com To unsubscribe from this group, send email to sage-support-unsubscr...@googlegroups.com For more options, visit this group at http://groups.google.com/group/sage-support URLs: http://www.sagemath.org -~----------~----~----~----~------~----~------~--~---