Hi Martin,

On Aug 1, 4:09 pm, Martin Albrecht <m...@informatik.uni-bremen.de>
wrote:
> sage: R.<a111,a112,a121,a122,b111,b112,b211,b212,c111,c112> =
> BooleanPolynomialRing(order='lex')
> sage: I=(a111 * b111 * c111 + a112 * b112 * c112 - 1 , a111 * b211 * c111 +
> ....: a112 * b212 * c112 - 0 , a121 * b111 * c111 + a122 * b112 * c112 ,
> ....: a121 * b211 * c111 + a122 * b212 * c112 - 1)*R
>
> sage: I.groebner_basis()
> [a111 + b212, a112 + b211, a121 + b112, a122 + b111, c111 + 1, c112 + 1]

Why do I get a different result? Bug in PolyBoRi, a changed
interpretation of the meaning of "lex" (I use sage 4.1, and you?), or
a misprint on my side (but so far I can't see any)?

sage:
RB.<a111,a112,a121,a122,b111,b112,b211,b212,c111,c112>=BooleanPolynomialRing
(order='lex')
sage: IB = (a111 * b111 * c111 + a112 * b112 * c112 - 1 , a111 * b211
* c111 + a112 * b212 * c112 - 0 , a121 * b111 * c111 + a122 * b112 *
c112 , a121 * b211 * c111 + a122 * b212 * c112 - 1)*RB
sage: GB = IB.groebner_basis()
sage: GB
[a111 + b212, a112 + b211, a121 + b112, a122 + b111, b111*b112 + b111
+ b112 + 1, b111*b211 + b111 + b211 + 1, b111*b212 + b112*b211 + 1,
b112*b212 + b112 + b212 + 1, b211*b212 + b211 + b212 + 1, c111 + 1,
c112 + 1]

It seems that your answer is not a Groebner Basis:

sage: G = Sequence([a111 + b212, a112 + b211, a121 + b112, a122 +
b111, c111 + 1, c112 + 1])
sage: [p.reduce(G) for p in GB]

[0,
 0,
 0,
 0,
 b111*b112 + b111 + b112 + 1,
 b111*b211 + b111 + b211 + 1,
 b111*b212 + b112*b211 + 1,
 b112*b212 + b112 + b212 + 1,
 b211*b212 + b211 + b212 + 1,
 0,
 0]
sage: [p.reduce(GB) for p in G]
[0, 0, 0, 0, 0, 0]

Cheers,
   Simon

--~--~---------~--~----~------------~-------~--~----~
To post to this group, send email to sage-support@googlegroups.com
To unsubscribe from this group, send email to 
sage-support-unsubscr...@googlegroups.com
For more options, visit this group at 
http://groups.google.com/group/sage-support
URLs: http://www.sagemath.org
-~----------~----~----~----~------~----~------~--~---

Reply via email to