On Thu, Mar 26, 2009 at 8:00 AM, Drini <pdsanc...@gmail.com> wrote: > > > > Jason Grout wrote: > >> >> Here it is using linear algebra: >> >> sage: var('a,b,c,d,x,y') >> (a, b, c, d, x, y) >> sage: A=matrix(2,[a,b,c,d]); A >> [a b] >> [c d] >> sage: result=vector([3,5]); result >> (3, 5) >> sage: soln=A.solve_right(result) # you could also do soln=A\result >> sage: soln >> (3/a - b*(5 - 3*c/a)/(a*(d - b*c/a)), (5 - 3*c/a)/(d - b*c/a)) >> >> >> Now, checking our answers: >> >> >> sage: (a*x+b*y).subs(x=soln[0],y=soln[1]).simplify_full() >> 3 >> sage: (c*x+d*y).subs(x=soln[0],y=soln[1]).simplify_full() >> 5 >> >> >> Or just checking it with matrix multiplication: >> >> sage: A*soln >> (a*(3/a - b*(5 - 3*c/a)/(a*(d - b*c/a))) + b*(5 - 3*c/a)/(d - b*c/a), >> c*(3/a - b*(5 - 3*c/a)/(a*(d - b*c/a))) + (5 - 3*c/a)*d/(d - b*c/a)) >> >> Let's simplify each entry by applying the "simplify_full" function to >> each entry: >> >> sage: (A*soln).apply_map(lambda x: x.simplify_full()) >> (3, 5) >> >> >> This example probably ought to go into some documentation somewhere... >> >> Jason > > Well :) it was almost too nice to be true: > > n=var('n') > T=vector([3,n]) > A=matrix([[6,2],[7,1]]) > A.solve_right(T) > > Traceback (most recent call last): > File "<stdin>", line 1, in <module> > File "/home/drini/.sage/sage_notebook/worksheets/admin/6/code/ > 34.py", line 6, in <module> > (......) > TypeError: unable to convert n to a rational > > Likewise with A\T > > it's kinda strange that such elemental system of equations can't be > done symbollically by matrix way: > 6x + 2y = 3 > 7x + y = n > > of course, changing n for some number works.
Do this: sage: n=var('n') sage: T=vector([3,n]) sage: A=matrix(SR,[[6,2],[7,1]]) sage: A.solve_right(T) ((n - 7/2)/4 + 1/2, -3*(n - 7/2)/4) Robert Dodier -- yes, it's using Maxima. -- William --~--~---------~--~----~------------~-------~--~----~ To post to this group, send email to sage-support@googlegroups.com To unsubscribe from this group, send email to sage-support-unsubscr...@googlegroups.com For more options, visit this group at http://groups.google.com/group/sage-support URLs: http://www.sagemath.org -~----------~----~----~----~------~----~------~--~---