Hi Dave:

Once you have your zero-dimensional ideal K within a Sage ring, you
could try the variety() command

K.variety(ring=QQbar) or
K.variety(ring=CC)

to get its solutions as algebraic numbers or complex floating point
numbers, respectively.  See 'variety()' under

http://www.sagemath.org/doc/ref/module-sage.rings.polynomial.multi-polynomial-ideal.html

for more details. Problem is, variety() sometimes fails:
http://sagetrac.org/sage_trac/ticket/4622 .

Alex


On Feb 25, 7:27 am, davidp <dav...@reed.edu> wrote:
> Hi,
>
> I have the following homogeneous Singular ideal defining a finite set
> of points in projective space.  I would like to get numerical
> approximations for these points.
>
> sage: S.ring()
>
> //   characteristic : 0
> //   number of vars : 4
> //        block   1 : ordering dp
> //                  : names    x_3 x_2 x_1 x_0
> //        block   2 : ordering C
> sage: S.ideal()
>
> x_1^3-x_3*x_2*x_0,
> x_3*x_2*x_1-x_0^3,
> x_2^3-x_3*x_1*x_0,
> x_3^3-x_2*x_1*x_0,
> x_2^2*x_1^2-x_3^2*x_0^2,
> x_3^2*x_1^2-x_2^2*x_0^2,
> x_3^2*x_2^2-x_1^2*x_0^2
> sage: type(S.ideal())
> <class 'sage.interfaces.singular.SingularElement'>
>
> One way to go might be to map to a new ring, setting x_0 = 1, then use
> the nice Singular algorithm for finding the solutions:
>
> http://www.singular.uni-kl.de/Manual/3-0-4/sing_582.htm
>
> I couldn't figure out how to get the Singular "map" function to work
> with Sage, so I just converted equations using string commands (saved
> in "y" in the following code) then tried:
>
> sage: R = singular.ring(0,'(x_3,x_2,x_1)','lp')
> sage: J = singular.ideal(y)
> sage: J
>
> -x_3*x_2+x_1^3,
> x_3*x_2*x_1-1,
> -x_3*x_1+x_2^3,
> x_3^3-x_2*x_1,
> -x_3^2+x_2^2*x_1^2,
> x_3^2*x_1^2-x_2^2,
> x_3^2*x_2^2-x_1^2
> sage: K = J.groebner()
> sage: M = K.solve(10,1)
>
> I'm not sure where to go from there.  Of course, I might be taking the
> wrong approach altogether.
>
> Any advice would be appreciated.
>
> Thanks,
> Dave
--~--~---------~--~----~------------~-------~--~----~
To post to this group, send email to sage-support@googlegroups.com
To unsubscribe from this group, send email to 
sage-support-unsubscr...@googlegroups.com
For more options, visit this group at 
http://groups.google.com/group/sage-support
URLs: http://www.sagemath.org
-~----------~----~----~----~------~----~------~--~---

Reply via email to