Hi, I have the following homogeneous Singular ideal defining a finite set of points in projective space. I would like to get numerical approximations for these points.
sage: S.ring() // characteristic : 0 // number of vars : 4 // block 1 : ordering dp // : names x_3 x_2 x_1 x_0 // block 2 : ordering C sage: S.ideal() x_1^3-x_3*x_2*x_0, x_3*x_2*x_1-x_0^3, x_2^3-x_3*x_1*x_0, x_3^3-x_2*x_1*x_0, x_2^2*x_1^2-x_3^2*x_0^2, x_3^2*x_1^2-x_2^2*x_0^2, x_3^2*x_2^2-x_1^2*x_0^2 sage: type(S.ideal()) <class 'sage.interfaces.singular.SingularElement'> One way to go might be to map to a new ring, setting x_0 = 1, then use the nice Singular algorithm for finding the solutions: http://www.singular.uni-kl.de/Manual/3-0-4/sing_582.htm I couldn't figure out how to get the Singular "map" function to work with Sage, so I just converted equations using string commands (saved in "y" in the following code) then tried: sage: R = singular.ring(0,'(x_3,x_2,x_1)','lp') sage: J = singular.ideal(y) sage: J -x_3*x_2+x_1^3, x_3*x_2*x_1-1, -x_3*x_1+x_2^3, x_3^3-x_2*x_1, -x_3^2+x_2^2*x_1^2, x_3^2*x_1^2-x_2^2, x_3^2*x_2^2-x_1^2 sage: K = J.groebner() sage: M = K.solve(10,1) I'm not sure where to go from there. Of course, I might be taking the wrong approach altogether. Any advice would be appreciated. Thanks, Dave --~--~---------~--~----~------------~-------~--~----~ To post to this group, send email to sage-support@googlegroups.com To unsubscribe from this group, send email to sage-support-unsubscr...@googlegroups.com For more options, visit this group at http://groups.google.com/group/sage-support URLs: http://www.sagemath.org -~----------~----~----~----~------~----~------~--~---