How come that solve doesn't solve this?

sage: solve(sqrt(sqrt(4*x^2 + 1) - x^2 - 1), x)
[x == -sqrt(sqrt(4*x^2 + 1) - 1), x == sqrt(sqrt(4*x^2 + 1) - 1)]

sage: axiom.solve(sqrt(sqrt(4*x^2 + 1) - x^2 - 1), x)

            +-+       +-+
  [x= 0,x= \|2 ,x= - \|2 ]

Furthermore, is there a way to convince integrate to do

sage: integrate(sqrt(sqrt(4*x^2 + 1) - x^2 - 1), x,0,sqrt(2))
integrate(sqrt(sqrt(4*x^2 + 1) - x^2 - 1), x, 0, sqrt(2))

sage: axiom.integrate(sqrt(sqrt(4*x^2 + 1) - x^2 - 1), "x=0..sqrt(2)", 
'"noPole"')

  1
  -
  2

a third question: how do I get a power series expansion of, say, x^(1/3)?

sage: axiom.series(sin(x)^(1/3),x=0)

   1       7
   -       -
   3    1  3      4
  x  - -- x  + O(x )
       18


(I know how to do it with FriCAS, but I'd like to know how I can show my
students how to do these things with sage.  Actually, sage-3.1.2, that is
what's installed.)

Martin


--~--~---------~--~----~------------~-------~--~----~
To post to this group, send email to sage-support@googlegroups.com
To unsubscribe from this group, send email to [EMAIL PROTECTED]
For more options, visit this group at 
http://groups.google.com/group/sage-support
URLs: http://www.sagemath.org
-~----------~----~----~----~------~----~------~--~---

Reply via email to