How come that solve doesn't solve this? sage: solve(sqrt(sqrt(4*x^2 + 1) - x^2 - 1), x) [x == -sqrt(sqrt(4*x^2 + 1) - 1), x == sqrt(sqrt(4*x^2 + 1) - 1)]
sage: axiom.solve(sqrt(sqrt(4*x^2 + 1) - x^2 - 1), x) +-+ +-+ [x= 0,x= \|2 ,x= - \|2 ] Furthermore, is there a way to convince integrate to do sage: integrate(sqrt(sqrt(4*x^2 + 1) - x^2 - 1), x,0,sqrt(2)) integrate(sqrt(sqrt(4*x^2 + 1) - x^2 - 1), x, 0, sqrt(2)) sage: axiom.integrate(sqrt(sqrt(4*x^2 + 1) - x^2 - 1), "x=0..sqrt(2)", '"noPole"') 1 - 2 a third question: how do I get a power series expansion of, say, x^(1/3)? sage: axiom.series(sin(x)^(1/3),x=0) 1 7 - - 3 1 3 4 x - -- x + O(x ) 18 (I know how to do it with FriCAS, but I'd like to know how I can show my students how to do these things with sage. Actually, sage-3.1.2, that is what's installed.) Martin --~--~---------~--~----~------------~-------~--~----~ To post to this group, send email to sage-support@googlegroups.com To unsubscribe from this group, send email to [EMAIL PROTECTED] For more options, visit this group at http://groups.google.com/group/sage-support URLs: http://www.sagemath.org -~----------~----~----~----~------~----~------~--~---