Jason Grout wrote: > Jim Clark wrote: >> The reference manual shows the following example for the gradient() >> function: >> >> sage: x,y = var('x y') >> sage: f = x^2+y^2 >> sage: f.gradient() >> (2*x, 2*y) >> >> However, if instead I enter: >> >> sage: x,y,n = var('x y n') >> sage: f = x^n+y^n >> sage: f.gradient() >> (y^n*log(y) + x^n*log(x), n*x^(n - 1), n*y^(n - 1)) >> >> (not what I wanted, but I can understand what happened.) >> So I tried: >> >> sage: f(x,y) = x^n+y^n >> sage: f.gradient() >> ((x, y) |--> y^n*log(y) + x^n*log(x), (x, y) |--> n*x^(n - 1), (x, y) >> |--> n*y^(n - 1)) >> >> So even if I specify that f is a function of x and y, >> gradient() still insists on also differentiating w.r.t. n >> >> How do I tell gradient() that n is a constant? > > > Good point. Right now, the gradient function looks like this: > > from sage.modules.free_module_element import vector > l=[self.derivative(x) for x in self.variables()] > return vector(l) > > That second line should probably be > l=[self.derivative(x) for x in self.arguments()] > > and then your last example should work.
I've posted a patch to http://trac.sagemath.org/sage_trac/ticket/4343 Can you apply the patch and test it out? Here is the new behavior: sage: f(x,y) = x^n+y^n sage: f.gradient() ((x, y) |--> n*x^(n - 1), (x, y) |--> n*y^(n - 1)) sage: f.gradient([y,x]) ((x, y) |--> n*y^(n - 1), (x, y) |--> n*x^(n - 1)) Thanks, Jason --~--~---------~--~----~------------~-------~--~----~ To post to this group, send email to sage-support@googlegroups.com To unsubscribe from this group, send email to [EMAIL PROTECTED] For more options, visit this group at http://groups.google.com/group/sage-support URLs: http://www.sagemath.org -~----------~----~----~----~------~----~------~--~---