Jason Grout wrote:
> Jim Clark wrote:
>> The reference manual shows the following example for the gradient()  
>> function:
>>
>> sage: x,y = var('x y')
>> sage: f = x^2+y^2
>> sage: f.gradient()
>> (2*x, 2*y)
>>
>> However, if instead I enter:
>>
>> sage: x,y,n = var('x y n')
>> sage: f = x^n+y^n
>> sage: f.gradient()
>> (y^n*log(y) + x^n*log(x), n*x^(n - 1), n*y^(n - 1))
>>
>> (not what I wanted, but I can understand what happened.)
>> So I tried:
>>
>> sage: f(x,y) = x^n+y^n
>> sage: f.gradient()
>> ((x, y) |--> y^n*log(y) + x^n*log(x), (x, y) |--> n*x^(n - 1), (x, y)  
>> |--> n*y^(n - 1))
>>
>> So even if I specify that f is a function of x and y,
>> gradient() still insists on also differentiating w.r.t. n
>>
>> How do I tell gradient() that n is a constant?
> 
> 
> Good point.  Right now, the gradient function looks like this:
> 
>          from sage.modules.free_module_element import vector
>          l=[self.derivative(x) for x in self.variables()]
>          return vector(l)
> 
> That second line should probably be
>          l=[self.derivative(x) for x in self.arguments()]
> 
> and then your last example should work.


I've posted a patch to http://trac.sagemath.org/sage_trac/ticket/4343

Can you apply the patch and test it out?


Here is the new behavior:

             sage: f(x,y) = x^n+y^n
             sage: f.gradient()
             ((x, y) |--> n*x^(n - 1), (x, y) |--> n*y^(n - 1))
             sage: f.gradient([y,x])
             ((x, y) |--> n*y^(n - 1), (x, y) |--> n*x^(n - 1))



Thanks,

Jason



--~--~---------~--~----~------------~-------~--~----~
To post to this group, send email to sage-support@googlegroups.com
To unsubscribe from this group, send email to [EMAIL PROTECTED]
For more options, visit this group at 
http://groups.google.com/group/sage-support
URLs: http://www.sagemath.org
-~----------~----~----~----~------~----~------~--~---

Reply via email to