The reference manual shows the following example for the gradient() function:
sage: x,y = var('x y') sage: f = x^2+y^2 sage: f.gradient() (2*x, 2*y) However, if instead I enter: sage: x,y,n = var('x y n') sage: f = x^n+y^n sage: f.gradient() (y^n*log(y) + x^n*log(x), n*x^(n - 1), n*y^(n - 1)) (not what I wanted, but I can understand what happened.) So I tried: sage: f(x,y) = x^n+y^n sage: f.gradient() ((x, y) |--> y^n*log(y) + x^n*log(x), (x, y) |--> n*x^(n - 1), (x, y) |--> n*y^(n - 1)) So even if I specify that f is a function of x and y, gradient() still insists on also differentiating w.r.t. n How do I tell gradient() that n is a constant? Thanks in advance for insights. Jim Clark --~--~---------~--~----~------------~-------~--~----~ To post to this group, send email to sage-support@googlegroups.com To unsubscribe from this group, send email to [EMAIL PROTECTED] For more options, visit this group at http://groups.google.com/group/sage-support URLs: http://www.sagemath.org -~----------~----~----~----~------~----~------~--~---