On Mon, Jul 27, 2015 at 1:09 AM, sairam <sairam.tatiko...@gmail.com> wrote:
> Thank you very much for the reply. In the integration specified, f is a > function of y > > When I use the following as suggested by you, > > x, y, a= var('x,y,a') > f = function("f", y) > integrate(integrate((diff(f,y))*(exp(-a*x^2)*cos(y)^2*sin(x)^3), x, 0, > pi), y, -pi, pi) > > Sagemath is dumping an error. I would appreciate if you can helping me > sorting out the problem in evaluating the integral. > > A simpler way to get this error (since your double integral is obviously a product of 2 integrals) is below. I don't understand this error either. sage: f = function("f", x) sage: integrate(diff(f,x)*cos(x)^2, x, -pi, pi) #0: signum_int(q=cos(2*_SAGE_VAR_x)*'diff('realpart(f(_SAGE_VAR_x)),_SAGE_VAR_x,1)+sin(2*_SAGE_VAR_x)*'diff('imagpart...,x=_SAGE_VAR_x) #1: extra_integrate(q=cos(2*_SAGE_VAR_x)*'diff('realpart(f(_SAGE_VAR_x)),_SAGE_VAR_x,1)+sin(2*_SAGE_VAR_x)*'diff('imagpart...,x=_SAGE_VAR_x) --------------------------------------------------------------------------- RuntimeError Traceback (most recent call last) <ipython-input-17-9166435d0d62> in <module>() ----> 1 integrate(diff(f,x)*cos(x)**Integer(2), x, -pi, pi) /Volumes/Bay3/sagefiles2/sage-6.4.1/local/lib/python2.7/site-packages/sage/misc/functional.pyc in integral(x, *args, **kwds) 800 """ 801 if hasattr(x, 'integral'): --> 802 return x.integral(*args, **kwds) 803 else: 804 from sage.symbolic.ring import SR /Volumes/Bay3/sagefiles2/sage-6.4.1/local/lib/python2.7/site-packages/sage/symbolic/expression.so in sage.symbolic.expression.Expression.integral (build/cythonized/sage/symbolic/expression.cpp:50961)() /Volumes/Bay3/sagefiles2/sage-6.4.1/local/lib/python2.7/site-packages/sage/symbolic/integration/integral.pyc in integrate(expression, v, a, b, algorithm, hold) 710 return indefinite_integral(expression, v, hold=hold) 711 else: --> 712 return definite_integral(expression, v, a, b, hold=hold) 713 714 integral = integrate /Volumes/Bay3/sagefiles2/sage-6.4.1/local/lib/python2.7/site-packages/sage/symbolic/function.so in sage.symbolic.function.BuiltinFunction.__call__ (build/cythonized/sage/symbolic/function.cpp:9269)() /Volumes/Bay3/sagefiles2/sage-6.4.1/local/lib/python2.7/site-packages/sage/symbolic/function.so in sage.symbolic.function.Function.__call__ (build/cythonized/sage/symbolic/function.cpp:5911)() /Volumes/Bay3/sagefiles2/sage-6.4.1/local/lib/python2.7/site-packages/sage/symbolic/integration/integral.pyc in _eval_(self, f, x, a, b) 173 for integrator in self.integrators: 174 try: --> 175 return integrator(*args) 176 except NotImplementedError: 177 pass /Volumes/Bay3/sagefiles2/sage-6.4.1/local/lib/python2.7/site-packages/sage/symbolic/integration/external.pyc in maxima_integrator(expression, v, a, b) 19 result = maxima.sr_integral(expression,v) 20 else: ---> 21 result = maxima.sr_integral(expression, v, a, b) 22 return result._sage_() 23 /Volumes/Bay3/sagefiles2/sage-6.4.1/local/lib/python2.7/site-packages/sage/interfaces/maxima_lib.pyc in sr_integral(self, *args) 774 """ 775 try: --> 776 return max_to_sr(maxima_eval(([max_integrate],[sr_to_max(SR(a)) for a in args]))) 777 except RuntimeError as error: 778 s = str(error) /Volumes/Bay3/sagefiles2/sage-6.4.1/local/lib/python2.7/site-packages/sage/libs/ecl.so in sage.libs.ecl.EclObject.__call__ (build/cythonized/sage/libs/ecl.c:6877)() /Volumes/Bay3/sagefiles2/sage-6.4.1/local/lib/python2.7/site-packages/sage/libs/ecl.so in sage.libs.ecl.ecl_safe_apply (build/cythonized/sage/libs/ecl.c:4734)() RuntimeError: ECL says: Error executing code in Maxima: Thank you once again, > > Regards, > sairam > > On Sunday, July 26, 2015 at 4:38:59 PM UTC+5:30, David Joyner wrote: >> >> In the integrand below, is f simply a function of y or does it also >> depend on x? >> >> >> On Jul 26, 2015, at 04:25, sairam <sairam.t...@gmail.com> wrote: >>> >>> >>> <https://lh3.googleusercontent.com/-HGLRuiudDNI/VbRfkfqbiNI/AAAAAAAAAFk/gVw9Ejc6pyo/s1600/CodeCogsEqn.gif> >>> >>> Hi >>> >>> I am new bie to sagemath and trying to find the analytical integration >>> for the above. >>> >>> I have used the following expressions in sagemath >>> >>> x, y, a, f = var('x,y,a,f') >>> >>> >> >> f = function("f", x) >> or >> f = function("f",x,y) >> >> integrate(integrate((diff(f))*(exp(-a*x^2)*cos(y)^2*sin(x)^3), x, 0, pi), >>> y, -pi, pi) >>> >>> >> In the first case, you want >> >> >> x, y, a= var('x,y,a') >> f = function("f", x) >> integrate(integrate((diff(f,x))*(exp(-a*x^2)*cos(y)^2*sin(x)^3), x, 0, >> pi), y, -pi, pi) >> >> which will give you the partially evaluated integral. >> >> The sagemath tutorials have more examples. >> http://doc.sagemath.org/html/en/tutorial/index.html >> >> >> >> >>> Though it gives output for the above expression, it does not consider >>> the term differential of f, can you please let me know how to include the >>> differential in the integration. >>> >>> If I use the following, which includes differential with respect to y, >>> it does not run but dumps an error >>> >>> integrate(integrate((diff(f), y)*(exp(-a*x^2)*cos(y)^2*sin(x)^3), x, 0, >>> pi), y, -pi, pi) >>> >>> Any help for solving the above integration will be highly appreciated. >>> >>> Thanks in advance, >>> >>> Regards, >>> sairam >>> >>> >>> -- You received this message because you are subscribed to the Google Groups "sage-edu" group. To unsubscribe from this group and stop receiving emails from it, send an email to sage-edu+unsubscr...@googlegroups.com. To post to this group, send email to sage-edu@googlegroups.com. Visit this group at http://groups.google.com/group/sage-edu. For more options, visit https://groups.google.com/d/optout.