Le samedi 19 juillet 2014 18:25:42 UTC+2, Anne Schilling a écrit : > > Hi! > > David Bailey (http://www.davidhbailey.com/) showed Viviane, Travis, and > myself the > following oddity yesterday. > > Take the integral > > \int_0^1 \int_0^1 |e^{2\pi i x} + e^{2\pi i y}| dx dy > > The answer should be 4/\pi. >
Ahem. I do not understand your expected result (but my complex analysis is rusty)...). In the notebook (sage 6.3beta6) : var("x,y,t,u,v") assume(x,"real",y,"real",t,"real",u,"real",v,"real",u>0,v>0,t>0) foo(x,y)=abs(e^(2*i*pi*x)+e^(2*i*pi*y)) bar(u,v)=integrate(integrate(foo(x,y),y,0,v),x,0,u) show(bar(u,v).simplify_full()) gee(t)=bar(t,t) limit(gee(t),t=1) The expression for bar is atrocious. bit the limit is not : 1/2*I/pi By the way : gee(1) gives : -1/2*I/pi indeed. But: integrate(integrate(foo(x,y),y,0,1),x,0,1) gives : 0 -- Emmanuel Charpentier > > Both Mathematica and Maple give 0 as an answer. Unfortunately, Sage/Maxima > also gives 0: > > sage: f = lambda x,y : simplify((e^(2*pi*I*x)+e^(2*pi*I*y)).abs()) > sage: integral(integral(f(x,y),(x,0,1)),(y,0,1)) > 0 > > Pulling out e^{2\pi i x} to simplify the integral to a one dimensional > integral, > Sage can solve this numerically: > > sage: g = lambda x : (1+e^(2*pi*I*x)).abs() > sage: numerical_integral(g,0,1) > (1.2732395447351625, 1.4155343563970746e-14) > sage: n(4/pi) > 1.27323954473516 > > but not symbolically: > > sage: integral(g,(x,0,1)) > --------------------------------------------------------------------------- > > TypeError Traceback (most recent call > last) > <ipython-input-68-233115ecebe7> in <module>() > ----> 1 integral(g,(x,Integer(0),Integer(1))) > > /Applications/sage/local/lib/python2.7/site-packages/sage/misc/functional.pyc > in integral(x, *args, **kwds) > 765 else: > 766 from sage.symbolic.ring import SR > --> 767 return SR(x).integral(*args, **kwds) > 768 > 769 integrate = integral > ... > TypeError: > > Best, > > Anne > -- You received this message because you are subscribed to the Google Groups "sage-devel" group. To unsubscribe from this group and stop receiving emails from it, send an email to sage-devel+unsubscr...@googlegroups.com. To post to this group, send email to sage-devel@googlegroups.com. Visit this group at http://groups.google.com/group/sage-devel. For more options, visit https://groups.google.com/d/optout.