Hi! David Bailey (http://www.davidhbailey.com/) showed Viviane, Travis, and myself the following oddity yesterday.
Take the integral \int_0^1 \int_0^1 |e^{2\pi i x} + e^{2\pi i y}| dx dy The answer should be 4/\pi. Both Mathematica and Maple give 0 as an answer. Unfortunately, Sage/Maxima also gives 0: sage: f = lambda x,y : simplify((e^(2*pi*I*x)+e^(2*pi*I*y)).abs()) sage: integral(integral(f(x,y),(x,0,1)),(y,0,1)) 0 Pulling out e^{2\pi i x} to simplify the integral to a one dimensional integral, Sage can solve this numerically: sage: g = lambda x : (1+e^(2*pi*I*x)).abs() sage: numerical_integral(g,0,1) (1.2732395447351625, 1.4155343563970746e-14) sage: n(4/pi) 1.27323954473516 but not symbolically: sage: integral(g,(x,0,1)) --------------------------------------------------------------------------- TypeError Traceback (most recent call last) <ipython-input-68-233115ecebe7> in <module>() ----> 1 integral(g,(x,Integer(0),Integer(1))) /Applications/sage/local/lib/python2.7/site-packages/sage/misc/functional.pyc in integral(x, *args, **kwds) 765 else: 766 from sage.symbolic.ring import SR --> 767 return SR(x).integral(*args, **kwds) 768 769 integrate = integral ... TypeError: Best, Anne -- You received this message because you are subscribed to the Google Groups "sage-devel" group. To unsubscribe from this group and stop receiving emails from it, send an email to sage-devel+unsubscr...@googlegroups.com. To post to this group, send email to sage-devel@googlegroups.com. Visit this group at http://groups.google.com/group/sage-devel. For more options, visit https://groups.google.com/d/optout.