On 2-Jun-09, at 9:33 PM, Minh Nguyen wrote:

>
> On Sun, May 31, 2009 at 11:15 PM, Mike Hansen <mhan...@gmail.com>  
> wrote:
>> On Sun, May 31, 2009 at 3:42 PM, William Stein <wst...@gmail.com>  
>> wrote:
>>> Micheal Abshoff was the only one who ever made them, so I hope you  
>>> can
>>> figure it out.
>>
>> Jason Grout and I started them.  You can find them at
>> http://sage.math.washington.edu/home/mhansen/sage-4-release-notes
>
> You can find a nicely formatted release tour of Sage 4.0 at
>
> http://mvngu.wordpress.com/2009/06/03/sage-4-0-released/

First, I really appreciate the human edited release tour!

However, the examples you give for some of the work I did (the number  
field relativize) include "improved" timings that are likely just  
noise.  The real benefit only comes in for fields where computing a  
pari nf is costly.  I think this is a better example (one that  
wouldn't terminate in reasonable time in earlier versions -- for  
example, I killed it after 5 seconds in a pari nfinit call on  
sage.math):

sage: x = ZZ['x'].0
sage: f1 = x^6 - x^5 + 3*x^4 - x^3 + 2*x + 1
sage: f2 = x^6 - 3*x^4 - 3*x^3 + x^2 - 5*x + 128
sage: Cs = NumberField(f1, 'a').composite_fields(NumberField(f2, 'b'),  
'c')
sage: Cs[0]
Number Field in c0 with defining polynomial x^36 + 6*x^35 + 15*x^34 -  
4*x^33 - 111*x^32 - 274*x^31 + 582*x^30 + 4324*x^29 - 3789*x^28 -  
54668*x^27 + 32320*x^26 + 856085*x^25 + 1298637*x^24 - 2417756*x^23 -  
13665500*x^22 - 20951687*x^21 + 59477645*x^20 + 87168628*x^19 -  
22215303*x^18 + 1087742856*x^17 + 818805906*x^16 - 6530512252*x^15 +  
2925074857*x^14 + 34364936564*x^13 - 33537062600*x^12 -  
118414559201*x^11 + 163183807491*x^10 + 260157742832*x^9 -  
605914536*x^8 + 913639172503*x^7 + 2281698823419*x^6 -  
2611018483575*x^5 - 9050720943737*x^4 - 6039450304329*x^3 +  
11443636068924*x^2 + 6013419415005*x + 2666558286895

sage: %time Cs[0].relativize(Cs[0].subfields(6)[0][1], 'z')
CPU times: user 2.48 s, sys: 0.04 s, total: 2.52 s
Wall time: 2.55 s
Number Field in z0 with defining polynomial x^6 +  
(-10039053522/7502233115183347*c00^5 +  
10877293823487/15004466230366694*c00^4 -  
2360331495431769/15004466230366694*c00^3 +  
128474733039101100/7502233115183347*c00^2 -  
14065562373889051803/15004466230366694*c00 +  
310508311372489830621/15004466230366694)*x^5 +  
(1684161096735/60017864921466776*c00^5 -  
482099403293805/30008932460733388*c00^4 +  
220599517382473455/60017864921466776*c00^3 -  
25269626581733395995/60017864921466776*c00^2 +  
727078349789696789565/30008932460733388*c00 -  
33787826577687321855963/60017864921466776)*x^4 +  
(78399653403/15004466230366694*c00^5 -  
20828815654522/7502233115183347*c00^4 +  
8825176716960093/15004466230366694*c00^3 -  
933213426139820735/15004466230366694*c00^2 +  
24657212906331074698/7502233115183347*c00 -  
1041516656628768048179/15004466230366694)*x^3 +  
(-801387260499/30008932460733388*c00^5 +  
115968827806665/7502233115183347*c00^4 -  
107159067879439581/30008932460733388*c00^3 +  
12379376610271322667/30008932460733388*c00^2 -  
179457468744004910316/7502233115183347*c00 +  
16802522081228250322201/30008932460733388)*x^2 +  
(-1558518536591/60017864921466776*c00^5 +  
444804027025213/30008932460733388*c00^4 -  
202861597209142591/60017864921466776*c00^3 +  
23151366405463607211/60017864921466776*c00^2 -  
663271312652093373749/30008932460733388*c00 +  
30664716263354572251675/60017864921466776)*x + c00 over its base field

Again, thanks for your efforts.

Nick

--~--~---------~--~----~------------~-------~--~----~
To post to this group, send email to sage-devel@googlegroups.com
To unsubscribe from this group, send email to 
sage-devel-unsubscr...@googlegroups.com
For more options, visit this group at http://groups.google.com/group/sage-devel
URLs: http://www.sagemath.org
-~----------~----~----~----~------~----~------~--~---

Reply via email to