Well, applying a naive exact linear algebra routine to inexact data, and that's what Sage is doing here, is prone to errors. sage: A=m.augment(identity_matrix(RR,2)) sage: A [-6.12323399573677e-17 -1.72508242466029 1.00000000000000 0.000000000000000] [ 0.579682446302195 6.12323399573677e-17 0.000000000000000 1.00000000000000] sage: A.echelonize(algorithm="classical");A # OOOPS! - that's the default here [ 1.00000000000000 0.000000000000000 4.00000000000000 1.72508242466029] [ 0.000000000000000 1.00000000000000 -0.579682446302195 -6.12323399573676e-17] sage: A=m.augment(identity_matrix(RR,2)) sage: A.echelonize(algorithm='scaled_partial_pivoting');A # that's how it should be [ 1.00000000000000 0.000000000000000 6.12323399573677e-17 1.72508242466029] [ 0.000000000000000 1.00000000000000 -0.579682446302195 -6.12323399573677e-17]
On Sat, Nov 5, 2022 at 10:21 AM Emmanuel Charpentier <emanuel.charpent...@gmail.com> wrote: > > something is definitely unhinged here : On 9.8.beta3 running on Debian > testing on core i7 + 16 GB RAM, after running : > > a = RR(-4967757600021511 / 2**106) > b = RR(-7769080564883485 / 2**52) > c = RR( 5221315298319565 / 2**53) > m = matrix([[a, b], [c, -a]]) > M = matrix([[var("p%d%d"%(u, v), latex_name="p_{%s,%d}"%(u, v)) > for v in range(2)] > for u in range(2)]) > S = dict(zip(M.list(), [a, b, c, -a])) > MN = M.apply_map(lambda u:u.subs(S)) > > one gets : > > sage: m.parent() > Full MatrixSpace of 2 by 2 dense matrices over Real Field with 53 bits of > precision > sage: m*~m > [ 1.00000000000000 -1.23259516440783e-32] > [ 2.31872978520878 1.00000000000000] > sage: (~m)*m > [ 1.00000000000000 -6.90032969864117] > [6.16297582203915e-33 1.00000000000000] > sage: MN.parent() > Full MatrixSpace of 2 by 2 dense matrices over Symbolic Ring > sage: MN*~MN > [ 1.00000000000000 -1.23259516440783e-32] > [ 2.31872978520878 1.00000000000000] > sage: (~MN)*MN > [ 1.00000000000000 -6.90032969864117] > [6.16297582203915e-33 1.00000000000000] > > all being wrong, wrong, wrong… > > However : > > sage: (M*~M).apply_map(lambda u:u.subs(S)) > [ 1.00000000000000 0] > [-3.54953126192945e-17 1.00000000000000] > sage: ((~M)*M).apply_map(lambda u:u.subs(S)) > [ 1.00000000000000 1.05630833481279e-16] > [ 0 1.00000000000000] > > both being acceptable. > > One also notes that the form of : > > sage: ~M > [1/p00 - p01*p10/(p00^2*(p01*p10/p00 - p11)) > p01/(p00*(p01*p10/p00 - p11))] > [ p10/(p00*(p01*p10/p00 - p11)) > -1/(p01*p10/p00 - p11)] > sage: (~M).apply_map(simplify) > [1/p00 - p01*p10/(p00^2*(p01*p10/p00 - p11)) > p01/(p00*(p01*p10/p00 - p11))] > [ p10/(p00*(p01*p10/p00 - p11)) > -1/(p01*p10/p00 - p11)] > > is somewhat unexpected ; one expects : > > sage: (~M).apply_map(lambda u:u.simplify_full()) > [-p11/(p01*p10 - p00*p11) p01/(p01*p10 - p00*p11)] > [ p10/(p01*p10 - p00*p11) -p00/(p01*p10 - p00*p11)] > > which is also the form returned by maxima : > > sage: maxima_calculus.invert(M).sage() > [-p11/(p01*p10 - p00*p11) p01/(p01*p10 - p00*p11)] > [ p10/(p01*p10 - p00*p11) -p00/(p01*p10 - p00*p11)] > > giac : > > sage: giac.inverse(giac(M)).sage() > [[-p11/(p01*p10 - p00*p11), p01/(p01*p10 - p00*p11)], > [p10/(p01*p10 - p00*p11), -p00/(p01*p10 - p00*p11)]] > > fricas : > > sage: fricas.inverse(M._fricas_()).sage() > [-p11/(p01*p10 - p00*p11) p01/(p01*p10 - p00*p11)] > [ p10/(p01*p10 - p00*p11) -p00/(p01*p10 - p00*p11)] > > mathematica : > > sage: mathematica.Inverse(M).sage() > [[-p11/(p01*p10 - p00*p11), p01/(p01*p10 - p00*p11)], > [p10/(p01*p10 - p00*p11), -p00/(p01*p10 - p00*p11)]] > > and (somewhat un-backconvertible) : > > sage: sympy.sympify(M)^-1._sage_() > Matrix([ > [ p11/(p00*p11 - p01*p10), -p01/(p00*p11 - p01*p10)], > [-p10/(p00*p11 - p01*p10), p00/(p00*p11 - p01*p10)]]) > > This is, IMNSHO, a critical bug. Could you open a tichet for this, and mark > it as such ? > > Le samedi 5 novembre 2022 à 07:59:27 UTC+1, Håkan Granath a écrit : >> >> Hi, there seems to be a problem with inverses of matrices with elements in >> RR. It only occurs very sporadically for me, but here is an example: >> >> a = RR(-4967757600021511 / 2**106) >> b = RR(-7769080564883485 / 2**52) >> c = RR( 5221315298319565 / 2**53) >> >> m = matrix([[a, b], [c, -a]]) >> >> print(m) >> print() >> print(~m) >> >> On my machines it produces the output >> >> [-6.12323399573677e-17 -1.72508242466029] >> [ 0.579682446302195 6.12323399573677e-17] >> >> [ 4.00000000000000 1.72508242466029] >> [ -0.579682446302195 -6.12323399573676e-17] >> >> Clearly the element 4 is wrong (the correct inverse is -m). Is this a known >> bug? >> >> Some system information: >> >> SageMath version 9.7, using Python 3.10.5 >> OS: Ubuntu 20.04.5 LTS >> CPU: Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz >> >> Best regards, >> >> Håkan Granath > > -- > You received this message because you are subscribed to the Google Groups > "sage-devel" group. > To unsubscribe from this group and stop receiving emails from it, send an > email to sage-devel+unsubscr...@googlegroups.com. > To view this discussion on the web visit > https://groups.google.com/d/msgid/sage-devel/bec2d18e-8034-440c-8076-9a5e9ec93d2cn%40googlegroups.com. -- You received this message because you are subscribed to the Google Groups "sage-devel" group. To unsubscribe from this group and stop receiving emails from it, send an email to sage-devel+unsubscr...@googlegroups.com. To view this discussion on the web visit https://groups.google.com/d/msgid/sage-devel/CAAWYfq1r0mPMHc8-M-u5MX5u%3Dgb5aG92kd8UX%3DEhKrL1M%2BG6-Q%40mail.gmail.com.