something is *definitely* unhinged here : On 9.8.beta3 running on Debian 
testing on core i7 + 16 GB RAM, after running :

a = RR(-4967757600021511 / 2**106)
b = RR(-7769080564883485 / 2**52)
c = RR( 5221315298319565 / 2**53)
m = matrix([[a, b], [c, -a]])
M = matrix([[var("p%d%d"%(u, v), latex_name="p_{%s,%d}"%(u, v))
             for v in range(2)]
            for u in range(2)])
S = dict(zip(M.list(), [a, b, c, -a]))
MN = M.apply_map(lambda u:u.subs(S))

one gets :

sage: m.parent()
Full MatrixSpace of 2 by 2 dense matrices over Real Field with 53 bits of 
precision
sage: m*~m
[     1.00000000000000 -1.23259516440783e-32]
[     2.31872978520878      1.00000000000000]
sage: (~m)*m
[    1.00000000000000    -6.90032969864117]
[6.16297582203915e-33     1.00000000000000]
sage: MN.parent()
Full MatrixSpace of 2 by 2 dense matrices over Symbolic Ring
sage: MN*~MN
[     1.00000000000000 -1.23259516440783e-32]
[     2.31872978520878      1.00000000000000]
sage: (~MN)*MN
[    1.00000000000000    -6.90032969864117]
[6.16297582203915e-33     1.00000000000000]

all being wrong, *wrong*, *wrong*…

However :

sage: (M*~M).apply_map(lambda u:u.subs(S))
[     1.00000000000000                     0]
[-3.54953126192945e-17      1.00000000000000]
sage: ((~M)*M).apply_map(lambda u:u.subs(S))
[    1.00000000000000 1.05630833481279e-16]
[                   0     1.00000000000000]

both being acceptable.

One also notes that the form of :

sage: ~M
[1/p00 - p01*p10/(p00^2*(p01*p10/p00 - p11))               
p01/(p00*(p01*p10/p00 - p11))]
[              p10/(p00*(p01*p10/p00 - p11))                      
-1/(p01*p10/p00 - p11)]
sage: (~M).apply_map(simplify)
[1/p00 - p01*p10/(p00^2*(p01*p10/p00 - p11))               
p01/(p00*(p01*p10/p00 - p11))]
[              p10/(p00*(p01*p10/p00 - p11))                      
-1/(p01*p10/p00 - p11)]

is somewhat unexpected ; one expects :

sage: (~M).apply_map(lambda u:u.simplify_full())
[-p11/(p01*p10 - p00*p11)  p01/(p01*p10 - p00*p11)]
[ p10/(p01*p10 - p00*p11) -p00/(p01*p10 - p00*p11)]

which is also the form returned by maxima :

sage: maxima_calculus.invert(M).sage()
[-p11/(p01*p10 - p00*p11)  p01/(p01*p10 - p00*p11)]
[ p10/(p01*p10 - p00*p11) -p00/(p01*p10 - p00*p11)]

giac :

sage: giac.inverse(giac(M)).sage()
[[-p11/(p01*p10 - p00*p11), p01/(p01*p10 - p00*p11)],
 [p10/(p01*p10 - p00*p11), -p00/(p01*p10 - p00*p11)]]

fricas :

sage: fricas.inverse(M._fricas_()).sage()
[-p11/(p01*p10 - p00*p11)  p01/(p01*p10 - p00*p11)]
[ p10/(p01*p10 - p00*p11) -p00/(p01*p10 - p00*p11)]

mathematica :

sage: mathematica.Inverse(M).sage()
[[-p11/(p01*p10 - p00*p11), p01/(p01*p10 - p00*p11)],
 [p10/(p01*p10 - p00*p11), -p00/(p01*p10 - p00*p11)]]

and (somewhat un-backconvertible) :

sage: sympy.sympify(M)^-1._sage_()
Matrix([
[ p11/(p00*p11 - p01*p10), -p01/(p00*p11 - p01*p10)],
[-p10/(p00*p11 - p01*p10),  p00/(p00*p11 - p01*p10)]])

This is, IMNSHO, a *critical* bug. Could you open a tichet for this, and 
mark it as such ?
​
Le samedi 5 novembre 2022 à 07:59:27 UTC+1, Håkan Granath a écrit :

> Hi, there seems to be a problem with inverses of matrices with elements in 
> RR. It only occurs very sporadically for me, but here is an example:
>
> a = RR(-4967757600021511 / 2**106)
> b = RR(-7769080564883485 / 2**52)
> c = RR( 5221315298319565 / 2**53)
>
> m = matrix([[a, b], [c, -a]])
>
> print(m)
> print()
> print(~m)
>
> On my machines it produces the output
>
> [-6.12323399573677e-17     -1.72508242466029]
> [    0.579682446302195  6.12323399573677e-17]
>
> [     4.00000000000000      1.72508242466029]
> [   -0.579682446302195 -6.12323399573676e-17]
>
> Clearly the element 4 is wrong (the correct inverse is -m). Is this a 
> known bug?
>
> Some system information:
>
>   SageMath version 9.7, using Python 3.10.5
>   OS: Ubuntu 20.04.5 LTS
>   CPU: Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz
>
> Best regards,
>
> Håkan Granath
>

-- 
You received this message because you are subscribed to the Google Groups 
"sage-devel" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to sage-devel+unsubscr...@googlegroups.com.
To view this discussion on the web visit 
https://groups.google.com/d/msgid/sage-devel/bec2d18e-8034-440c-8076-9a5e9ec93d2cn%40googlegroups.com.

Reply via email to