This is now ticket #33245 <https://trac.sagemath.org/ticket/33245>

El domingo, 30 de enero de 2022 a las 13:38:38 UTC+1, 
emanuel.c...@gmail.com escribió:

> FWIW, after rebuilding Sage with system’s giac :
>
> sage: integrate(e^x/(x^2+1), x, -pi, pi)
> 1/2*(imag_part(Ei(pi + I))*tan(1/2)^2 - imag_part(Ei(pi - I))*tan(1/2)^2 + 
> 2*real_part(Ei(pi + I))*tan(1/2) + 2*real_part(Ei(pi - I))*tan(1/2) - 
> imag_part(Ei(pi + I)) + imag_part(Ei(pi - I)))/(tan(1/2)^2 + 1) - 
> 1/2*(imag_part(Ei(-pi + I))*tan(1/2)^2 - imag_part(Ei(-pi - I))*tan(1/2)^2 + 
> 2*real_part(Ei(-pi + I))*tan(1/2) + 2*real_part(Ei(-pi - I))*tan(1/2) - 
> imag_part(Ei(-pi + I)) + imag_part(Ei(-pi - I)))/(tan(1/2)^2 + 1)
> sage: giac.version()
> "giac 1.7.0, (c) B. Parisse and R. De Graeve, Institut Fourier, Universite de 
> Grenoble I"
>
> But now, ptestlong exhibits new bugs 
> <https://groups.google.com/g/sage-release/c/aOpjpfOXgro/m/03WJYuNTFwAJ>. 
> Sigh (again)…
>
> HTH,
> ​
> Le dimanche 30 janvier 2022 à 07:25:48 UTC+1, Emmanuel Charpentier a 
> écrit :
>
>> To add insult to injury, trying to re-enable system’s giac (make 
>> giac-clean && configure failed. Somehow,./configurefinds no *suitable* 
>> systemgiacversion, and re-builds Sage's giac. It seems that I should 
>> also cleanpari` and consorts and re-re-build…
>>
>> Sigh…
>> ​
>> Le vendredi 28 janvier 2022 à 23:10:23 UTC+1, dmo...@deductivepress.ca a 
>> écrit :
>>
>>> I confirm the problem so please open a ticket.
>>>
>>> I tried 9.5rc4 on MacOS 11.5.2, I tried 9.4 and 9.5rc4 on Ubuntu 20.04 
>>> (CoCalc), and I tried 9.5rc3 on a 32-bit Debian virtual machine.  Maybe 
>>> something would have happened eventually, but none of them gave an answer 
>>> within 20 minutes.  The giac version seems to be 1.6.0 in all cases.
>>>
>>> On Friday, January 28, 2022 at 1:23:08 PM UTC-7 emanuel.c...@gmail.com 
>>> wrote:
>>>
>>>> Can’t reproduce on Sage 9.5.rc1 running in Debian testing. First thing 
>>>> after session start :
>>>>
>>>> sage: integrate(e^x/(x^2+1), x, -pi, pi)
>>>> // Giac share root-directory:/usr/share/giac/
>>>> // Giac share root-directory:/usr/share/giac/
>>>> Added 0 synonyms
>>>> 1/2*(imag_part(Ei(pi + I))*tan(1/2)^2 - imag_part(Ei(pi - I))*tan(1/2)^2 + 
>>>> 2*real_part(Ei(pi + I))*tan(1/2) + 2*real_part(Ei(pi - I))*tan(1/2) - 
>>>> imag_part(Ei(pi + I)) + imag_part(Ei(pi - I)))/(tan(1/2)^2 + 1) - 
>>>> 1/2*(imag_part(Ei(-pi + I))*tan(1/2)^2 - imag_part(Ei(-pi - I))*tan(1/2)^2 
>>>> + 2*real_part(Ei(-pi + I))*tan(1/2) + 2*real_part(Ei(-pi - I))*tan(1/2) - 
>>>> imag_part(Ei(-pi + I)) + imag_part(Ei(-pi - I)))/(tan(1/2)^2 + 1)
>>>>
>>>> BTW:
>>>>
>>>> sage: integrate(e^x/(x^2+1), x).simplify_full()
>>>> 1/2*(2*I*cos(1/2)^2 + 2*cos(1/2)*sin(1/2) - I)*Ei(x + I) + 
>>>> 1/2*(-2*I*cos(1/2)^2 + 2*cos(1/2)*sin(1/2) + I)*Ei(x - I)
>>>> sage: integrate(e^x/(x^2+1), x, algorithm="fricas").simplify_full()
>>>> 1/2*(-I*Ei(x - I)*e^(2*I) + I*Ei(x + I))*e^(-I)
>>>>
>>>> And these expressions are equal :
>>>>
>>>> sage: integrate(e^x/(x^2+1), x).trig_reduce().exponentialize().factor()
>>>> -1/2*I*(Ei(x - I)*e^(2*I) - Ei(x + I))*e^(-I)
>>>> sage: integrate(e^x/(x^2+1), x, algorithm="fricas")
>>>> -1/2*I*(Ei(x - I)*e^(2*I) - Ei(x + I))*e^(-I)
>>>>
>>>> Mathematica gives the same (mathematical) result (but this can’t be 
>>>> backtranslated to Sage now, for lack of ExpIntegralEi in the 
>>>> translation dictionary) :
>>>>
>>>> sage: mathematica.Integrate(e^x/(x^2+1), x)
>>>> ((-I/2)*(E^(2*I)*ExpIntegralEi[-I + x] - ExpIntegralEi[I + x]))/E^I
>>>>
>>>> HTH,
>>>> ​
>>>> Le vendredi 28 janvier 2022 à 11:56:14 UTC+1, Emmanuel Briand a écrit :
>>>>
>>>>> Using Sage 9.4 installed with conda on Mac OS X 10.13.6,  I observe an 
>>>>> erratic behaviour of "integrate" for a very specific integral. 
>>>>>
>>>>> The following command runs forever:
>>>>>
>>>>> sage: integrate(e^x/(x^2+1), x, -pi, pi)
>>>>>
>>>>> (The problem does not show up with another interval of integration, 
>>>>> e.g. 0, pi or -pi, 0 instead of -pi, pi).
>>>>>
>>>>> After interrupting, the following message is shown:
>>>>>
>>>>> ^CInterrupting Giac...
>>>>>
>>>>> integrate(e^x/(x^2 + 1), x, -pi, pi)
>>>>>
>>>>> Running a second time the command returns the question, which is ok.
>>>>>
>>>>> sage: integrate(e^x/(x^2+1), x, -pi, pi)
>>>>> integrate(e^x/(x^2 + 1), x, -pi, pi)
>>>>>
>>>>> But running a third time (or fourth o more) the command returns a 
>>>>> wrong result:
>>>>>
>>>>> sage: integrate(e^x/(x^2+1), x, -pi, pi)
>>>>> -pi*e^x/(x^2 + 1) - x*e^x/(x^2 + 1)
>>>>>
>>>>> Actually, after that, no integral of th same function can be 
>>>>> calculated:
>>>>>
>>>>> sage: integrate(e^x/(x^2+1), x,0, 1)
>>>>> -x*e^x/(x^2 + 1)
>>>>>
>>>>> Intgrls of other functions are ok.
>>>>>
>>>>>
>>>>>
>>>>> The problem does not show up when avoiding giac:
>>>>>
>>>>> sage: integrate(e^x/(x^2+1), x, -pi, pi, algorithm='maxima')
>>>>> integrate(e^x/(x^2 + 1), x, -pi, pi)
>>>>>
>>>>> Asking for the giac version gives no clue:
>>>>>
>>>>> sage: giac.version()
>>>>> "Done"
>>>>>
>>>>> Should I open a ticket for this? 
>>>>>
>>>>> Emmanuel Briand
>>>>>
>>>>>
>>>>>
>>>>>

-- 
You received this message because you are subscribed to the Google Groups 
"sage-devel" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to sage-devel+unsubscr...@googlegroups.com.
To view this discussion on the web visit 
https://groups.google.com/d/msgid/sage-devel/a870341f-e35b-4c60-b8b9-1a29a68bc630n%40googlegroups.com.

Reply via email to