FWIW, after rebuilding Sage with system’s giac :

sage: integrate(e^x/(x^2+1), x, -pi, pi)
1/2*(imag_part(Ei(pi + I))*tan(1/2)^2 - imag_part(Ei(pi - I))*tan(1/2)^2 + 
2*real_part(Ei(pi + I))*tan(1/2) + 2*real_part(Ei(pi - I))*tan(1/2) - 
imag_part(Ei(pi + I)) + imag_part(Ei(pi - I)))/(tan(1/2)^2 + 1) - 
1/2*(imag_part(Ei(-pi + I))*tan(1/2)^2 - imag_part(Ei(-pi - I))*tan(1/2)^2 + 
2*real_part(Ei(-pi + I))*tan(1/2) + 2*real_part(Ei(-pi - I))*tan(1/2) - 
imag_part(Ei(-pi + I)) + imag_part(Ei(-pi - I)))/(tan(1/2)^2 + 1)
sage: giac.version()
"giac 1.7.0, (c) B. Parisse and R. De Graeve, Institut Fourier, Universite de 
Grenoble I"

But now, ptestlong exhibits new bugs 
<https://groups.google.com/g/sage-release/c/aOpjpfOXgro/m/03WJYuNTFwAJ>. 
Sigh (again)…

HTH,
​
Le dimanche 30 janvier 2022 à 07:25:48 UTC+1, Emmanuel Charpentier a écrit :

> To add insult to injury, trying to re-enable system’s giac (make 
> giac-clean && configure failed. Somehow,./configurefinds no *suitable* 
> systemgiacversion, and re-builds Sage's giac. It seems that I should also 
> cleanpari` and consorts and re-re-build…
>
> Sigh…
> ​
> Le vendredi 28 janvier 2022 à 23:10:23 UTC+1, dmo...@deductivepress.ca a 
> écrit :
>
>> I confirm the problem so please open a ticket.
>>
>> I tried 9.5rc4 on MacOS 11.5.2, I tried 9.4 and 9.5rc4 on Ubuntu 20.04 
>> (CoCalc), and I tried 9.5rc3 on a 32-bit Debian virtual machine.  Maybe 
>> something would have happened eventually, but none of them gave an answer 
>> within 20 minutes.  The giac version seems to be 1.6.0 in all cases.
>>
>> On Friday, January 28, 2022 at 1:23:08 PM UTC-7 emanuel.c...@gmail.com 
>> wrote:
>>
>>> Can’t reproduce on Sage 9.5.rc1 running in Debian testing. First thing 
>>> after session start :
>>>
>>> sage: integrate(e^x/(x^2+1), x, -pi, pi)
>>> // Giac share root-directory:/usr/share/giac/
>>> // Giac share root-directory:/usr/share/giac/
>>> Added 0 synonyms
>>> 1/2*(imag_part(Ei(pi + I))*tan(1/2)^2 - imag_part(Ei(pi - I))*tan(1/2)^2 + 
>>> 2*real_part(Ei(pi + I))*tan(1/2) + 2*real_part(Ei(pi - I))*tan(1/2) - 
>>> imag_part(Ei(pi + I)) + imag_part(Ei(pi - I)))/(tan(1/2)^2 + 1) - 
>>> 1/2*(imag_part(Ei(-pi + I))*tan(1/2)^2 - imag_part(Ei(-pi - I))*tan(1/2)^2 
>>> + 2*real_part(Ei(-pi + I))*tan(1/2) + 2*real_part(Ei(-pi - I))*tan(1/2) - 
>>> imag_part(Ei(-pi + I)) + imag_part(Ei(-pi - I)))/(tan(1/2)^2 + 1)
>>>
>>> BTW:
>>>
>>> sage: integrate(e^x/(x^2+1), x).simplify_full()
>>> 1/2*(2*I*cos(1/2)^2 + 2*cos(1/2)*sin(1/2) - I)*Ei(x + I) + 
>>> 1/2*(-2*I*cos(1/2)^2 + 2*cos(1/2)*sin(1/2) + I)*Ei(x - I)
>>> sage: integrate(e^x/(x^2+1), x, algorithm="fricas").simplify_full()
>>> 1/2*(-I*Ei(x - I)*e^(2*I) + I*Ei(x + I))*e^(-I)
>>>
>>> And these expressions are equal :
>>>
>>> sage: integrate(e^x/(x^2+1), x).trig_reduce().exponentialize().factor()
>>> -1/2*I*(Ei(x - I)*e^(2*I) - Ei(x + I))*e^(-I)
>>> sage: integrate(e^x/(x^2+1), x, algorithm="fricas")
>>> -1/2*I*(Ei(x - I)*e^(2*I) - Ei(x + I))*e^(-I)
>>>
>>> Mathematica gives the same (mathematical) result (but this can’t be 
>>> backtranslated to Sage now, for lack of ExpIntegralEi in the 
>>> translation dictionary) :
>>>
>>> sage: mathematica.Integrate(e^x/(x^2+1), x)
>>> ((-I/2)*(E^(2*I)*ExpIntegralEi[-I + x] - ExpIntegralEi[I + x]))/E^I
>>>
>>> HTH,
>>> ​
>>> Le vendredi 28 janvier 2022 à 11:56:14 UTC+1, Emmanuel Briand a écrit :
>>>
>>>> Using Sage 9.4 installed with conda on Mac OS X 10.13.6,  I observe an 
>>>> erratic behaviour of "integrate" for a very specific integral. 
>>>>
>>>> The following command runs forever:
>>>>
>>>> sage: integrate(e^x/(x^2+1), x, -pi, pi)
>>>>
>>>> (The problem does not show up with another interval of integration, e.g. 
>>>> 0, pi or -pi, 0 instead of -pi, pi).
>>>>
>>>> After interrupting, the following message is shown:
>>>>
>>>> ^CInterrupting Giac...
>>>>
>>>> integrate(e^x/(x^2 + 1), x, -pi, pi)
>>>>
>>>> Running a second time the command returns the question, which is ok.
>>>>
>>>> sage: integrate(e^x/(x^2+1), x, -pi, pi)
>>>> integrate(e^x/(x^2 + 1), x, -pi, pi)
>>>>
>>>> But running a third time (or fourth o more) the command returns a wrong 
>>>> result:
>>>>
>>>> sage: integrate(e^x/(x^2+1), x, -pi, pi)
>>>> -pi*e^x/(x^2 + 1) - x*e^x/(x^2 + 1)
>>>>
>>>> Actually, after that, no integral of th same function can be calculated:
>>>>
>>>> sage: integrate(e^x/(x^2+1), x,0, 1)
>>>> -x*e^x/(x^2 + 1)
>>>>
>>>> Intgrls of other functions are ok.
>>>>
>>>>
>>>>
>>>> The problem does not show up when avoiding giac:
>>>>
>>>> sage: integrate(e^x/(x^2+1), x, -pi, pi, algorithm='maxima')
>>>> integrate(e^x/(x^2 + 1), x, -pi, pi)
>>>>
>>>> Asking for the giac version gives no clue:
>>>>
>>>> sage: giac.version()
>>>> "Done"
>>>>
>>>> Should I open a ticket for this? 
>>>>
>>>> Emmanuel Briand
>>>>
>>>>
>>>>
>>>>

-- 
You received this message because you are subscribed to the Google Groups 
"sage-devel" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to sage-devel+unsubscr...@googlegroups.com.
To view this discussion on the web visit 
https://groups.google.com/d/msgid/sage-devel/0b60ad20-db89-4309-b670-fd0c3ed2ac51n%40googlegroups.com.

Reply via email to