On Wed, Feb 20, 2008 at 8:36 PM, mabshoff
<[EMAIL PROTECTED]> wrote:
>
>  Here we go with 2.10.2.alpha2. It fixes a whole bunch of doctest
>  failures
>  and also finishes the merging of the graph theory code.
>
>  The tarball [209MB] is available at the usual place:
>
>  
> http://sage.math.washington.edu/home/mabshoff/release-cycles-2.10.2/sage-2.10.2.alpha2.tar
>
>  The doctest failures in detail:
>
>  const.tex: special function failure - see #2222
>
>  sage -t  devel/sage-main/sage/groups/group.pyx - #2224
>  sage -t  devel/sage-main/sage/misc/functional.py - #2226
>  sage -t  devel/sage-main/sage/modules/quotient_module.py - #2230
>
>  ---
>
>  sage -t  devel/sage-main/sage/rings/padics/padic_ZZ_pX_CR_element.pyx
>
>  4 times "NotImplementedError: log is not quite working yet" - David
>  Roe might or might not have the resources to implement the missing
>  bits.
>
>  ---
>
>  sage -t  devel/sage-main/sage/rings/polynomial/multi_polynomial.pyx
>
>  File "multi_polynomial.pyx", line 256:
>     sage: R(S.0)
>  Expected:
>     BROKEN -- FIX ME
>  Got:
>     p
>
>  I am hazy on the details, but the result is not correct, but it was
>  unclear during SD7 what the result should be or what causes the bug.
>
>  ---
>
>  sage -t  devel/sage-main/sage/schemes/elliptic_curves/padics.py
>
>  File "padics.py", line 947:
>     sage: E.padic_sigma_truncated(5, 10)
>  Expected:
>     O(5^11) + (1 + O(5^10))*t + O(5^9)*t^2 + (3 + 2*5^2 + 3*5^3 +
>  3*5^6 + 4*5^7 + O(5^8))*t^3 + O(5^7)*t^4 + (2 + 4*5^2 + 4*5^3 + 5^4 +
>  5^5 + O(5^6))*t^5 + O(5^5)*t^6 + (2 + 2*5 + 5^2 + 4*5^3 + O(5^4))*t^7
>  + O(5^3)*t^8 + (1 + 2*5 + O(5^2))*t^9 + O(5^1)*t^10 + O(t^11)
>  Got:
>     O(5^11) + (1 + O(5^10))*t + O(5^9)*t^2 + (3 + 2*5^2 + 3*5^3 +
>  3*5^6 + 4*5^7 + O(5^8))*t^3 + O(5^7)*t^4 + (2 + 4*5^2 + 4*5^3 + 5^4 +
>  5^5 + O(5^6))*t^5 + O(5^5)*t^6 + (2 + 2*5 + 5^2 + 4*5^3 + O(5^4))*t^7
>  + O(5^3)*t^8 + (1 + 2*5 + O(5^2))*t^9 + O(5)*t^10 + O(t^11)
>
>  Note the difference in printing: O(5^1)*t^10 vs. O(5)*t^10
>
>  Once we fix all the above issue 2.10.2 will be release. I am
>  optimitic
>  and think that this will be the case in the next 24 hours.

I've placed test logs here as usual:

   http://sage.math.washington.edu/home/was/build/tests/2.10.2.alpha2/

The genus2reduction and const.tex doctest failures are still there:

Total time for all tests: 8.4 seconds
sage -t  const.tex
*****************************
*****************************************
File "const.py", line 4626:
    : bessel_K(3,2,100)
Expected:
    0.64738539094863415315923557097
Got:
    0.647385390948634

----

genus2reduction was broken by the new makefile.

On ppc osx 10.4 there is another failure:
File "const.py", line 3200:
    : G = E.abelian_group(); G
Expected:
    (Multiplicative Abelian Group isomorphic to C5, ((1 : 0 : 1),))
Got:
    (Multiplicative Abelian Group isomorphic to C5, ((0 : 0 : 1),))

---

Also on ppc:

sage -t  devel/sage-main/sage/functions/special.py
********************************************
**************************
File "special.py", line 506:
    sage: bessel_J(3,10,"scipy")
Expected:
    0.0583793793052... - 1.65905485529...e-17*I
Got:
    0.0583793793052000 - 1.60046919179000e-17*I
**********************************************************************
1 items had failures:


Also on OSX 10.5 PPC:

         [5.1 s]
sage -t  devel/sage-main/sage/rings/number_field/totallyreal_rel.py***
*** Error: TIMED OUT! *** ***
*** *** Error: TIMED OUT! *** ***
         [181.1 s]
sage -t  devel/sage-main/sage/rings/number_field/unit_group.py
         [5.3 s]

So I think the totallyreal_rel.py doctests need to be changed (need some
#long's or...?)  Or maybe there really is a big problem.  I don't know.

William

--~--~---------~--~----~------------~-------~--~----~
To post to this group, send email to sage-devel@googlegroups.com
To unsubscribe from this group, send email to [EMAIL PROTECTED]
For more options, visit this group at http://groups.google.com/group/sage-devel
URLs: http://www.sagemath.org
-~----------~----~----~----~------~----~------~--~---

Reply via email to