> An example in Magma:
>  > A<x,y> := PolynomialRing(Integers(), 2);
>  > B<X,Y> := PolynomialRing(Rationals(),2);
>  > f  := -y^2 - y + x^3 + 7*x + 1;
>  > fx := Derivative(f,x);
>  > fy := Derivative(f,y);
>  >
>
>  > // Since the output is 1, I know that there are no generic
>  > // singularities.
>  >
>  > // To look at the singularities of the arithmetic surface,
>  > // I need to do the corresponding computation over ZZ:
>  > I := GroebnerBasis([f, fx, fy]);
>  > I;
>
> [
>      x + 20607,
>      y + 11314,
>      22627
> ]
>
>  > Factorization(I[3]);
>
> [
>      <11, 3>,
>      <17, 1>
> ]

Just a word on state of the art in SAGE:

sage: A.<x,y> = PolynomialRing(Integers(), 2, order="degrevlex")


sage: f  = -y^2 - y + x^3 + 7*x + 1
sage: fx = f.diff(x)
sage: fy = f.diff(y)

# Singular has an option called intStrategy to support calculations over ZZ, 
# however it doesn't help here.

sage: A._singular_(force=True)
sage: singular.option("intStrategy")
sage: I = Ideal([f,fx,fy])
sage: print singular.option()
sage: I.groebner_basis("singular:std")
 
//options: redTail redThrough intStrategy redefine loadLib usage prompt
[1]

# Macaulay2 (to install that optional package type: "sage -i 
macaulay2-20061014") however supports GBs over ZZ:

sage: I = Ideal([f,fx,fy])
sage: I.groebner_basis("macaulay2:gb") # actually the default over ZZ
                
[22627, -11313 + y, -2020 + x]

sage: factor(22627)
        
11^3 * 17

-- 
name: Martin Albrecht
_pgp: http://pgp.mit.edu:11371/pks/lookup?op=get&search=0x8EF0DC99
_www: http://www.informatik.uni-bremen.de/~malb
_jab: [EMAIL PROTECTED]


--~--~---------~--~----~------------~-------~--~----~
To post to this group, send email to sage-devel@googlegroups.com
To unsubscribe from this group, send email to [EMAIL PROTECTED]
For more options, visit this group at http://groups.google.com/group/sage-devel
URLs: http://sage.scipy.org/sage/ and http://modular.math.washington.edu/sage/
-~----------~----~----~----~------~----~------~--~---

Reply via email to