> An example in Magma: > > A<x,y> := PolynomialRing(Integers(), 2); > > B<X,Y> := PolynomialRing(Rationals(),2); > > f := -y^2 - y + x^3 + 7*x + 1; > > fx := Derivative(f,x); > > fy := Derivative(f,y); > > > > > // Since the output is 1, I know that there are no generic > > // singularities. > > > > // To look at the singularities of the arithmetic surface, > > // I need to do the corresponding computation over ZZ: > > I := GroebnerBasis([f, fx, fy]); > > I; > > [ > x + 20607, > y + 11314, > 22627 > ] > > > Factorization(I[3]); > > [ > <11, 3>, > <17, 1> > ]
Just a word on state of the art in SAGE: sage: A.<x,y> = PolynomialRing(Integers(), 2, order="degrevlex") sage: f = -y^2 - y + x^3 + 7*x + 1 sage: fx = f.diff(x) sage: fy = f.diff(y) # Singular has an option called intStrategy to support calculations over ZZ, # however it doesn't help here. sage: A._singular_(force=True) sage: singular.option("intStrategy") sage: I = Ideal([f,fx,fy]) sage: print singular.option() sage: I.groebner_basis("singular:std") //options: redTail redThrough intStrategy redefine loadLib usage prompt [1] # Macaulay2 (to install that optional package type: "sage -i macaulay2-20061014") however supports GBs over ZZ: sage: I = Ideal([f,fx,fy]) sage: I.groebner_basis("macaulay2:gb") # actually the default over ZZ [22627, -11313 + y, -2020 + x] sage: factor(22627) 11^3 * 17 -- name: Martin Albrecht _pgp: http://pgp.mit.edu:11371/pks/lookup?op=get&search=0x8EF0DC99 _www: http://www.informatik.uni-bremen.de/~malb _jab: [EMAIL PROTECTED] --~--~---------~--~----~------------~-------~--~----~ To post to this group, send email to sage-devel@googlegroups.com To unsubscribe from this group, send email to [EMAIL PROTECTED] For more options, visit this group at http://groups.google.com/group/sage-devel URLs: http://sage.scipy.org/sage/ and http://modular.math.washington.edu/sage/ -~----------~----~----~----~------~----~------~--~---