Hmm, I thought this was a bug, but the following works:

sage: R = ZZ['u', 'v'].fraction_field()

sage: EllipticCurve(R, [1,1])
 Elliptic Curve defined by y^2  = x^3 + x +1 over Fraction Field of
Polynomial Ring in u, v over Integer Ring

Maybe the previous post shouldn't work, because it's a ring, not a
field?  There are some algorithms that use the discrepancy, so
whatever happens the situation should be clarified.

Nick

On Feb 6, 8:32 pm, "Nick Alexander" <[EMAIL PROTECTED]> wrote:
> We still have problems coercing constants into polynomial rings, when
> the constants are themselves in interesting rings...
>
> sage: R = ZZ['u', 'v']
>
> sage: EllipticCurve(R, [1,1])
> ---------------------------------------------------------------------------
> <type 'exceptions.TypeError'>             Traceback (most recent call
> last)
>
> /Users/nalexand/<ipython console> in <module>()
>
> /Users/nalexand/Devel/sage/local/lib/python2.5/site-packages/sage/
> schemes/elliptic_curves/constructor.py in EllipticCurve(x, y)
>      97             return
> ell_finite_field.EllipticCurve_finite_field(x, y)
>      98         else:
> ---> 99             return ell_generic.EllipticCurve_generic(x, y)
>     100
>     101     if isinstance(x, str):
>
> /Users/nalexand/Devel/sage/local/lib/python2.5/site-packages/sage/
> schemes/elliptic_curves/ell_generic.py in __init__(self, ainvs, extra)
>      95         a1, a2, a3, a4, a6 = ainvs
>      96         f = y**2*z + (a1*x + a3*z)*y*z \
> ---> 97             - (x**3 + a2*x**2*z + a4*x*z**2 + a6*z**3)
>      98         plane_curve.ProjectiveCurve_generic.__init__(self, PP,
> f)
>      99         if K.is_field():
>
> /Users/nalexand/element.pyx in element.RingElement.__mul__()
>
> /Users/nalexand/element.pyx in element.bin_op_c()
>
> <type 'exceptions.TypeError'>: unsupported operand parent(s) for '*':
> 'Polynomial Ring in u, v over Integer Ring' and 'Polynomial Ring in x,
> y, z over Polynomial Ring in u, v over Integer Ring'
>
> Nick


--~--~---------~--~----~------------~-------~--~----~
To post to this group, send email to sage-devel@googlegroups.com
To unsubscribe from this group, send email to [EMAIL PROTECTED]
For more options, visit this group at http://groups.google.com/group/sage-devel
URLs: http://sage.scipy.org/sage/ and http://modular.math.washington.edu/sage/
-~----------~----~----~----~------~----~------~--~---

Reply via email to