On November 3, 2006 9:48 AM David Harvey wrote:
> 
> On Nov 3, 2006, at 9:37 AM, Bill Page wrote:
> 
> >
> > Maybe it is interesting to consider how Axiom handles these
> > coercions? For example:
> >
> > sage: x = axiom('x::MPOLY([x],INT)')
> > sage: x.type()
> > MultivariatePolynomial([x],Integer)
> > sage: y = axiom('y::MPOLY([y],INT)')
> > sage: y.type()
> > MultivariatePolynomial([y],Integer)
> > sage: z = x*y
> > sage: z
> >   y x
> > sage: z.type()
> > MultivariatePolynomial([x],MultivariatePolynomial([y],Integer))
> > sage: w = axiom('(x*y)::MPOLY([x,y],INT)')
> > sage: w
> >   y x
> > sage: w.type()
> > MultivariatePolynomial([x,y],Integer)
> 
> What would axiom do if you started off with x and y in a *univariate* 
> polynomial ring?
> 

sage: x=axiom('x::UP(x,INT)')
sage: y=axiom('y::UP(y,INT)')
sage: (x*y).type()
UnivariatePolynomial(x,UnivariatePolynomial(y,Integer))

In Axiom this can be coerced to MultivariatePolynomial
([x,y],Integer), but right now I do not yet have a method
in the Sage/Axiom interface that can easily apply Axiom's
:: coercion/conversion operator to an Sage Axiom ojbect.
So if you read my example above carefully and critically
you will see that the command:

  axiom('(x*y)::MPOLY([x,y],INT)')

is actually bogus, although the result shown is correct.

In axiom.console():

(1) -> x:=x::UP(x,INT)

   (1)  x
                                        Type:
UnivariatePolynomial(x,Integer)
(2) -> y:=y::UP(y,INT)

   (2)  y
                                        Type:
UnivariatePolynomial(y,Integer)
(3) -> x*y

   (3)  y x
                Type:
UnivariatePolynomial(x,UnivariatePolynomial(y,Integer))
(4) -> (x*y)::MPOLY([x,y],INT)

   (4)  y x
                                  Type:
MultivariatePolynomial([x,y],Integer)

Regards,
Bill Page



--~--~---------~--~----~------------~-------~--~----~
To post to this group, send email to sage-devel@googlegroups.com
To unsubscribe from this group, send email to [EMAIL PROTECTED]
For more options, visit this group at http://groups.google.com/group/sage-devel
URLs: http://sage.scipy.org/sage/ and http://modular.math.washington.edu/sage/
-~----------~----~----~----~------~----~------~--~---

Reply via email to