Hi, I am using rpy2
here is my code for running a LM model = "kw ~ S1+S2+S3+S4+S5+S6+DR+RH+FH+d6h9q45" robjects.globalenv['d6h9q45'] = robjects.FloatVector(df['d6h9q45']) #d6h9q45 robjects.globalenv['kw'] = robjects.FloatVector(df['KW']) robjects.globalenv['S1'] = robjects.FloatVector(df['S1']) robjects.globalenv['S2'] = robjects.FloatVector(df['S2']) robjects.globalenv['S3'] = robjects.FloatVector(df['S3']) robjects.globalenv['S4'] = robjects.FloatVector(df['S4']) robjects.globalenv['S5'] = robjects.FloatVector(df['S5']) robjects.globalenv['S6'] = robjects.FloatVector(df['S6']) robjects.globalenv['DR'] = robjects.FloatVector(df['DR']) robjects.globalenv['RH'] = robjects.FloatVector(df['RH']) robjects.globalenv['FH'] = robjects.FloatVector(df['FH']) for i in ind_map.keys(): robjects.globalenv[i] = robjects.FloatVector(df[i]) print 'Running OLS....' eos = robjects.r.lm(model) print robjects.r.summary(eos) # show results print eos.names How do I use predict with a dataframe of X values to predict Y. WHat is the python code? ------------------------------------------------------------------------------ All of the data generated in your IT infrastructure is seriously valuable. Why? It contains a definitive record of application performance, security threats, fraudulent activity, and more. Splunk takes this data and makes sense of it. IT sense. And common sense. http://p.sf.net/sfu/splunk-d2d-c2 _______________________________________________ rpy-list mailing list rpy-list@lists.sourceforge.net https://lists.sourceforge.net/lists/listinfo/rpy-list