singhpk234 commented on code in PR #51002: URL: https://github.com/apache/spark/pull/51002#discussion_r2114168866
########## sql/catalyst/src/main/scala/org/apache/spark/sql/connector/catalog/CatalogV2Util.scala: ########## @@ -597,11 +597,31 @@ private[sql] object CatalogV2Util { // Note: the back-fill here is a logical concept. The data source can keep the existing // data unchanged and let the data reader to return "exist default" for missing // columns. - val existingDefault = Literal(default.getValue.value(), default.getValue.dataType()).sql - f.withExistenceDefaultValue(existingDefault).withCurrentDefaultValue(default.getSql) + val existsDefault = extractExistsDefault(default) + val (sql, expr) = extractCurrentDefault(default) + val newMetadata = new MetadataBuilder() + .withMetadata(f.metadata) + .putString(EXISTS_DEFAULT_COLUMN_METADATA_KEY, existsDefault) + .putExpression(CURRENT_DEFAULT_COLUMN_METADATA_KEY, sql, expr) + .build() + f.copy(metadata = newMetadata) }.getOrElse(f) } + private def extractExistsDefault(default: ColumnDefaultValue): String = { + Literal(default.getValue.value(), default.getValue.dataType()).sql + } + + private def extractCurrentDefault(default: ColumnDefaultValue): (String, Option[Expression]) = { + val expr = Option(default.getExpression).flatMap(V2ExpressionUtils.toCatalyst) Review Comment: [doubt] presently `toCatalyst` doesn't handle connector scalar udf's is the plan to enhance this in future ? ########## sql/api/src/main/scala/org/apache/spark/sql/types/Metadata.scala: ########## @@ -120,6 +122,12 @@ sealed class Metadata private[types] (private[types] val map: Map[String, Any]) map(key).asInstanceOf[T] } + private[sql] def getExpression[E](key: String): (String, Option[E]) = { + val sql = getString(key) + val expr = if (runtimeMap != null) runtimeMap.get(key).map(_.asInstanceOf[E]) else None Review Comment: minor ```suggestion val expr = Option(runtimeMap).flatMap(_.get(key).map(_.asInstanceOf[E])) ``` ########## sql/catalyst/src/main/scala/org/apache/spark/sql/connector/catalog/CatalogV2Util.scala: ########## @@ -597,11 +597,31 @@ private[sql] object CatalogV2Util { // Note: the back-fill here is a logical concept. The data source can keep the existing // data unchanged and let the data reader to return "exist default" for missing // columns. - val existingDefault = Literal(default.getValue.value(), default.getValue.dataType()).sql - f.withExistenceDefaultValue(existingDefault).withCurrentDefaultValue(default.getSql) + val existsDefault = extractExistsDefault(default) + val (sql, expr) = extractCurrentDefault(default) + val newMetadata = new MetadataBuilder() + .withMetadata(f.metadata) + .putString(EXISTS_DEFAULT_COLUMN_METADATA_KEY, existsDefault) + .putExpression(CURRENT_DEFAULT_COLUMN_METADATA_KEY, sql, expr) + .build() + f.copy(metadata = newMetadata) }.getOrElse(f) } + private def extractExistsDefault(default: ColumnDefaultValue): String = { + Literal(default.getValue.value(), default.getValue.dataType()).sql + } + + private def extractCurrentDefault(default: ColumnDefaultValue): (String, Option[Expression]) = { + val expr = Option(default.getExpression).flatMap(V2ExpressionUtils.toCatalyst) + val sql = Option(default.getSql).orElse(expr.map(_.sql)).getOrElse { Review Comment: [doubt] my understanding was `.sql` is not reliable (based on discussion [here](https://github.com/apache/spark/pull/50792#discussion_r2078776399)), wondering if this could lead to users using `getMap` or map.get(key), directly and extracting the SQL from the map, skip actually checking if there is an expression for it and one should use that instead ? essentially if there i an entry in the runtimeMap should we let the map.get fail ? -- This is an automated message from the Apache Git Service. To respond to the message, please log on to GitHub and use the URL above to go to the specific comment. To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org For queries about this service, please contact Infrastructure at: us...@infra.apache.org --------------------------------------------------------------------- To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org For additional commands, e-mail: reviews-h...@spark.apache.org