Thank you, with the matrix for the responses (here my 101 timepoints), it takes less than 30 minutes for 1000 pemutations, whereas before it takes 2h30!
Best regards, Mélissa > Message du 10/06/10 18:52 > De : "Douglas Bates" > A : "melissa" > Copie à : r-help@r-project.org > Objet : Re: [R] do faster ANOVAS > > > The lm and aov functions can take a matrix response allowing you to > fit all of the responses for a single attribute simultaneously. > > > On Thu, Jun 10, 2010 at 8:47 AM, melissa wrote: > > Dear all R users, > > I want to realize 800 000 ANOVAS and to store Sum of Squares of the > > effects. Here is an extract of my table data > > Product attribute subject rep t1 t2 t3 ⦠t101 > > P1 A1 S1 R1 1 0 0 ⦠1 > > I want to realize 1 ANOVA per timepoint and per attribute, there are 101 > > timepoints and 8 attributes so I want to realize 808 ANOVAS. This will be > > an ANOVA with two factors : > > Here is one example: > > Aov(t1~Subject*Product,data[data$attribute==âA1â,]) > > I want to store for each ANOVA SSprod,SSsujet,SSerreur,SSinter and SStotal. > > In fact I want the result in several matrices: > > Ssprod matrice: > > T1 t2 t3 t4 ⦠t101 > > A1 ssprod(A1,T1) > > A2 > > A3 > > ⦠> > A8 > > So I would like a matrice like that for ssprod, ssujet,sserreur,ssinter and > > sstotal. > > And this is for one permutation, and I want to do 1000 permutations > > Here is my code: > > SSmatrixglobal<-function(k){ > > > > daten.temp<-data > > daten.temp$product=permutations[[k]] > > listmat<-apply(daten.temp[,5:105],2,function(x,y){ > > tab2<-as.data.frame(cbind(x,y)) > > tab.class<-by(tab2[,1:3],tab2[,4],function(x){ > > f <- formula(paste(names(x)[1],"~",names(x)[2],"*",names(x)[3],sep="")) > > anovas <- aov(f, data=x) > > anovas$call$formula <-f > > s1 <- summary(anovas) > > qa <- s1[[1]][,2] > > return(qa) > > }) > > return(tab.class) > > },y=daten.temp[,1:3] > > ) > > ar <- > > array(unlist(listmat),dim=c(length(listmat[[1]][[1]]),length(listmat[[1]]),length(listmat))) > > l=lapply(1:4,function(i) ar[i,,]) > > sssujet=l[[1]] > > ssprod=l[[2]] > > ssinter=l[[3]] > > sserreur=l[[4]] > > ss=rbind(sssujet,ssprod,ssinter,sserreur,sstotal) > > ss=as.data.frame(ss) > > sqlSave(channel,ss,"SS1000",append=T) > > rm(ss,numperm,daten.temp) > > } > > > > system.time(por <- lapply(c(1:1000), SSmatrixglobal)) > > > > But it takes time about 90seconds for a permutation so *1000, how can I do > > in order to do faster ANOVAS? > > > > Many thanks > > Best regards > > Mélissa > > > > PS: I think that I can gain a lot of time in the aov function but I don't > > know how to do > > [[alternative HTML version deleted]] > > > > > > ______________________________________________ > > R-help@r-project.org mailing list > > https://stat.ethz.ch/mailman/listinfo/r-help > > PLEASE do read the posting guide http://www.R-project.org/posting-guide.html > > and provide commented, minimal, self-contained, reproducible code. > > > > > > [[alternative HTML version deleted]]
______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.