Dear all R users, I want to realize 800 000 ANOVAS and to store Sum of Squares of the effects. Here is an extract of my table data Product attribute subject rep t1 t2 t3 ⦠t101 P1 A1 S1 R1 1 0 0 ⦠1 I want to realize 1 ANOVA per timepoint and per attribute, there are 101 timepoints and 8 attributes so I want to realize 808 ANOVAS. This will be an ANOVA with two factors : Here is one example: Aov(t1~Subject*Product,data[data$attribute==âA1â,]) I want to store for each ANOVA SSprod,SSsujet,SSerreur,SSinter and SStotal. In fact I want the result in several matrices: Ssprod matrice: T1 t2 t3 t4 ⦠t101 A1 ssprod(A1,T1) A2 A3 ⦠A8 So I would like a matrice like that for ssprod, ssujet,sserreur,ssinter and sstotal. And this is for one permutation, and I want to do 1000 permutations Here is my code: SSmatrixglobal<-function(k){
daten.temp<-data daten.temp$product=permutations[[k]] listmat<-apply(daten.temp[,5:105],2,function(x,y){ tab2<-as.data.frame(cbind(x,y)) tab.class<-by(tab2[,1:3],tab2[,4],function(x){ f <- formula(paste(names(x)[1],"~",names(x)[2],"*",names(x)[3],sep="")) anovas <- aov(f, data=x) anovas$call$formula <-f s1 <- summary(anovas) qa <- s1[[1]][,2] return(qa) }) return(tab.class) },y=daten.temp[,1:3] ) ar <- array(unlist(listmat),dim=c(length(listmat[[1]][[1]]),length(listmat[[1]]),length(listmat))) l=lapply(1:4,function(i) ar[i,,]) sssujet=l[[1]] ssprod=l[[2]] ssinter=l[[3]] sserreur=l[[4]] ss=rbind(sssujet,ssprod,ssinter,sserreur,sstotal) ss=as.data.frame(ss) sqlSave(channel,ss,"SS1000",append=T) rm(ss,numperm,daten.temp) } system.time(por <- lapply(c(1:1000), SSmatrixglobal)) But it takes time about 90seconds for a permutation so *1000, how can I do in order to do faster ANOVAS? Many thanks Best regards Mélissa PS: I think that I can gain a lot of time in the aov function but I don't know how to do [[alternative HTML version deleted]]
______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.