Thank you so much for your valuable feedback Berwin. Have a great day. Cheers, Paul
El El dom, 20 de ago. de 2023 a la(s) 10:21 p. m., Berwin A Turlach < berwin.turl...@gmail.com> escribió: > G'day Paul, > > On Sun, 20 Aug 2023 12:15:08 -0500 > Paul Bernal <paulberna...@gmail.com> wrote: > > > Any idea on how to proceed in this situation? What could I do? > > You are fitting a simple asymptotic model for which nls() can find good > starting values if you use the self starting models (SSxyz()). Well, > Doug (et al.) choose to parameterise the asymptotic model differently, > but you can easily change to your parameterisation if you want: > > ``` > fm1 <- nls(y ~ SSasymp(x, Asym, R0, lrc), data=mod14data2_random) > theta1 <- coef(fm1)["Asym"] > theta2 <- coef(fm1)["Asym"] - coef(fm1)["R0"] > theta3 <- exp(coef(fm1)["lrc"]) > > fm2 <- nls(y ~ theta1 - theta2 * exp(-theta3*x), > start=list(theta1=theta1, theta2=theta2, theta3=theta3), > data=mod14data2_random) > summary(fm2) > ``` > > Cheers, > > Berwin > [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.