I am using LOF.test() function from the qpcR package and got the following result:
> LOF.test(nlregmod3) $pF [1] 0.97686 $pLR [1] 0.77025 Can I conclude from the LOF.test() results that my nonlinear regression model is significant/statistically significant? Where my nonlinear model was fitted as follows: nlregmod3 <- nlsr(formula=y ~ theta1 - theta2*exp(-theta3*x), data = mod14data2_random, start = list(theta1 = 0.37, theta2 = -exp(-1.8), theta3 = 0.05538)) And the data used to fit this model is the following: dput(mod14data2_random) structure(list(index = c(14L, 27L, 37L, 33L, 34L, 16L, 7L, 1L, 39L, 36L, 40L, 19L, 28L, 38L, 32L), y = c(0.44, 0.4, 0.4, 0.4, 0.4, 0.43, 0.46, 0.49, 0.41, 0.41, 0.38, 0.42, 0.41, 0.4, 0.4 ), x = c(16, 24, 32, 30, 30, 16, 12, 8, 36, 32, 36, 20, 26, 34, 28)), row.names = c(NA, -15L), class = "data.frame") Cheers, Paul [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.