Thank you so much, I'll wait until then. The good thing is that we can make sure now what is the actual problem. I wish you have a good rest.
El jue., 29 ago. 2019 a las 14:55, William R Revelle (< reve...@northwestern.edu>) escribió: > Hi all. > > I am taking a brief vacation and will look at this next week. > > Bill > > > > On Aug 29, 2019, at 2:53 PM, William Dunlap <wdun...@tibco.com> wrote: > > > > Element #2 of that output, the empty fomula " F1=~ ", triggers the bug > in omegaSem. > > omegaSem needs to ignore such entries in omega's output. psych's author > should be able to fix things up. > > > > Bill Dunlap > > TIBCO Software > > wdunlap tibco.com > > > > > > On Thu, Aug 29, 2019 at 12:31 PM Danilo Esteban Rodriguez Zapata < > danilo_rodrig...@cun.edu.co> wrote: > > well the output with the code that you refer is the following: > > > > > psych::omega(my.data)$model$lavaan > > [1] g =~ > +AUT_10_04+AUN_07_01+AUN_07_02+AUN_09_01+AUN_10_01+AUT_11_01+AUT_17_01+AUT_20_03+CRE_05_02+CRE_07_04+CRE_10_01+CRE_16_02+EFEC_03_07+EFEC_05+EFEC_09_02+EFEC_16_03+EVA_02_01+EVA_07_01+EVA_12_02+EVA_15_06+FLX_04_01+FLX_04_05+FLX_08_02+FLX_10_03+IDO_01_06+IDO_05_02+IDO_09_03+IDO_17_01+IE_01_03+IE_10_03+IE_13_03+IE_15_01+LC_07_03+LC_08_02+LC_11_03+LC_11_05+ME_02_03+ME_07_06+ME_09_01+ME_09_06+NEG_01_03+NEG_05_04+NEG_07_03+NEG_08_01+OP_03_05+OP_12_01+OP_14_01+OP_14_02+ORL_01_03+ORL_03_01+ORL_03_05+ORL_10_05+PER_08_02+PER_16_01+PER_19_06+PER_22_06+PLA_01_03+PLA_05_01+PLA_07_02+PLA_10_01+PLA_12_02+PLA_18_01+PR_06_02+PR_15_03+PR_25_01+PR_25_06+REL_09_05+REL_14_03+REL_14_06+REL_16_04+RS_02_03+RS_07_05+RS_08_05+RS_13_03+TF_03_01+TF_04_01+TF_10_03+TF_12_01+TRE_09_05+TRE_09_06+TRE_26_04+TRE_26_05 > > [2] F1=~ > > > > > > > > > > > > [3] F2=~ + AUN_07_02 + CRE_05_02 + CRE_07_04 + CRE_16_02 + EFEC_09_02 + > EVA_12_02 + FLX_08_02 + IDO_01_06 + IDO_05_02 + LC_08_02 + LC_11_03 + > LC_11_05 + ME_02_03 + ME_07_06 + ME_09_06 + NEG_07_03 + OP_03_05 + OP_14_01 > + OP_14_02 + ORL_01_03 + ORL_03_01 + PER_08_02 + PER_19_06 + PLA_05_01 + > PLA_07_02 + PLA_10_01 + PLA_12_02 + PLA_18_01 + PR_06_02 + PR_15_03 + > PR_25_01 + PR_25_06 + REL_14_06 + REL_16_04 + TF_04_01 + TF_10_03 + > TRE_26_04 + TRE_26_05 > > > > > > [4] F3=~ + AUT_10_04 + AUN_07_01 + AUN_09_01 + AUN_10_01 + AUT_11_01 + > AUT_17_01 + AUT_20_03 + CRE_10_01 + EFEC_03_07 + EFEC_05 + EFEC_16_03 + > EVA_02_01 + EVA_07_01 + EVA_15_06 + FLX_04_01 + FLX_04_05 + FLX_10_03 + > IDO_09_03 + IDO_17_01 + IE_01_03 + IE_10_03 + IE_13_03 + IE_15_01 + > LC_07_03 + ME_09_01 + NEG_01_03 + NEG_05_04 + NEG_08_01 + OP_12_01 + > ORL_03_05 + ORL_10_05 + PER_16_01 + PER_22_06 + PLA_01_03 + REL_09_05 + > REL_14_03 + RS_02_03 + RS_07_05 + RS_08_05 + RS_13_03 + TF_03_01 + TF_12_01 > + TRE_09_05 + TRE_09_06 > > > > > > > > > > El jue., 29 ago. 2019 a las 14:29, Danilo Esteban Rodriguez Zapata (< > danilo_rodrig...@cun.edu.co>) escribió: > > Dear William, > > > > Thank you for your answer, I would like to add some information that I > just obtained looking in different sites and forums. Someone there ask me > to create a fake data file, so I did that from my original data file. What > I did was open the .csv file with notepad and replace all the 4 for 5 and > the 2 for 1, then I saved the file again with no other changes. I also > searched for the "~" in the file and I found nothing. Now with that file I > did the omegaSem() function and it worked succesfully, so the weird thing > here is that the omegaSem() function works with the fake data file, wich is > exactly the same as the original file, but recoding some answers as I said. > > > > It seems to be an issue with the file. When I replace, lets say, the 5 > for 6 and make the omegaSem() again, it works. Then I replace back again > the 6 for 5 in all the data and the function doesn't works anymore. > > > > > > El jue., 29 ago. 2019 a las 12:33, William Dunlap (<wdun...@tibco.com>) > escribió: > > > omegaSem(r9,n.obs=198) > > Error in parse(text = x, keep.source = FALSE) : > > <text>:2:0: unexpected end of input > > > > This error probably comes from calling factor("~") and > psych::omegaSem(data) will do that if all the columns in data are very > highly correlated with one another. In that case omega(data, nfactor=n) > will not be able to find n factors in the data but it returns "~" in place > of the factors that it could not find. E.g., > > > fakeData <- data.frame(A=1/(1:40), B=1/(2:41), C=1/(3:42), D=1/(4:43), > E=1/(5:44)) > > > cor(fakeData) > > A B C D E > > A 1.0000000 0.9782320 0.9481293 0.9215071 0.8988962 > > B 0.9782320 1.0000000 0.9932037 0.9811287 0.9684658 > > C 0.9481293 0.9932037 1.0000000 0.9969157 0.9906838 > > D 0.9215071 0.9811287 0.9969157 1.0000000 0.9983014 > > E 0.8988962 0.9684658 0.9906838 0.9983014 1.0000000 > > > psych::omegaSem(fakeData) > > Loading required namespace: lavaan > > Loading required namespace: GPArotation > > In factor.stats, I could not find the RMSEA upper bound . Sorry about > that > > Error in parse(text = x, keep.source = FALSE) : > > <text>:2:0: unexpected end of input > > 1: ~ > > ^ > > In addition: Warning message: > > In cov2cor(t(w) %*% r %*% w) : > > diag(.) had 0 or NA entries; non-finite result is doubtful > > > psych::omega(fakeData)$model$lavaan > > In factor.stats, I could not find the RMSEA upper bound . Sorry about > that > > [1] g =~ +A+B+C+D+E F1=~ + B + C + D + E F2=~ + A > > [4] F3=~ > > Warning message: > > In cov2cor(t(w) %*% r %*% w) : > > diag(.) had 0 or NA entries; non-finite result is doubtful > > > > You can get a result if you use nfactors=n where n is the number of the > good F<n> entries in psych::omega()$model$lavaan: > > > psych::omegaSem(fakeData, nfactors=2) > > ... > > > > Measures of factor score adequacy > > g F1* F2* > > Correlation of scores with factors 11.35 12.42 84.45 > > Multiple R square of scores with factors 128.93 154.32 7131.98 > > Minimum correlation of factor score estimates 256.86 307.64 14262.96 > > ... > > Does that work with your data? > > > > This is a problem that the maintainer of psych, > > > maintainer("psych") > > [1] "William Revelle <reve...@northwestern.edu>" > > would like to know about. > > > > > > > > > > > > > > Bill Dunlap > > TIBCO Software > > wdunlap tibco.com > > > > > > On Thu, Aug 29, 2019 at 9:03 AM Danilo Esteban Rodriguez Zapata via > R-help <r-help@r-project.org> wrote: > > This is a problem related to my last question referred to the omegaSem() > > function in the psych package (that is already solved because I realized > > that I was missing a variable assignment and because of that I had an > > 'object not found' error: > > > > > https://stackoverflow.com/questions/57661750/one-of-the-omegasem-function-arguments-is-an-object-not-found > > > > I was trying to use that function following the guide to find McDonald's > > hierarchical Omega by Dr William Revelle: > > > > http://personality-project.org/r/psych/HowTo/omega.pdf > > > > So now, with the variable error corrected, I'm having a different error > > that does not occur when I use the same function with the example > database > > (Thurstone) provided in the tutorial that comes with the psych package. I > > mean, I'm able to use the function succesfully using the Thurstone data > > (with no other action, I have the expected result) but the function > doesn't > > work when I use my own data. > > > > I searched over other posted questions, and the actions that they perform > > are not even similar to what I'm trying to do. I have almost two weeks > > using R, so I'm not able to identify yet how can I extrapolate the > > solutions for that error message to my procedure (because it seems to be > > frequent), although I have basic code knowledge. However related > questions > > give no anwer by now. > > > > Additionally, I decided to look over more documentation about the > package, > > and when I was testing other functions, I was able to use the omegaSem() > > function with another example database, BUT after and only after I did > the > > schmid transformation. So with that, I discovered that when I tried to > use > > the omegaSem() function before the schmid tranformation I had the same > > error message, but not after that tranformation with this second example > > database. > > > > This make sense with the actual procedure of the omegaSem() procedure, > but > > I'm suposing that it must be done completely and automatically by the > > omegaSem() function as it is explained in the guide and I have understood > > until now, as it follows: > > > > 1. omegaSem() applies factor analysis > > 2. omegaSem() rotate factors obliquely > > 3. omegaSem() transform data with Schmid Leiman (schmid) > > > > -------necessary steps to print output------------------- > > > > 4. omegaSem() print McDonald's hierarchical Omega > > > > So here, another questions appears: - Why the omegaSem() function works > > with the Thurstone database without any other action and only works for > the > > second example database after performing the schmid transformation? - > Why > > with other databases I dont have the same output applying the omegaSem() > > function directly? - How is this related to the error message that the > > compiler shows when I try to apply the function directly to the database? > > > > > > This is the code that I'm using now: (example of the succesfull > omegaSem() > > done after schmid tranformation not included) > > > > ``` > > > library(psych) > > > library(ctv, lavaan) > > > library(GPArotation) > > > my.data <- read.file() > > Data from the .csv file > > D:\Users\Admon\Documents\prueba_export_1563806208742.csv has been loaded. > > > describe(my.data) > > vars n mean sd median trimmed mad min max range skew > > kurtosis > > AUT_10_04 1 195 4.11 0.90 4 4.23 1.48 1 5 4 -0.92 > > 0.33 > > AUN_07_01 2 195 3.79 1.14 4 3.90 1.48 1 5 4 -0.59 > > -0.71 > > AUN_07_02 3 195 3.58 1.08 4 3.65 1.48 1 5 4 -0.39 > > -0.56 > > AUN_09_01 4 195 4.15 0.80 4 4.23 1.48 1 5 4 -0.76 > > 0.51 > > AUN_10_01 5 195 4.25 0.79 4 4.34 1.48 1 5 4 -0.91 > > 0.74 > > AUT_11_01 6 195 4.43 0.77 5 4.56 0.00 1 5 4 -1.69 > > 3.77 > > AUT_17_01 7 195 4.46 0.67 5 4.55 0.00 1 5 4 -1.34 > > 2.96 > > AUT_20_03 8 195 4.44 0.65 5 4.53 0.00 2 5 3 -0.84 > > 0.12 > > CRE_05_02 9 195 2.47 1.01 2 2.43 1.48 1 5 4 0.35 > > -0.46 > > CRE_07_04 10 195 2.42 1.08 2 2.34 1.48 1 5 4 0.51 > > -0.43 > > CRE_10_01 11 195 4.41 0.68 5 4.51 0.00 2 5 3 -0.79 > > -0.12 > > CRE_16_02 12 195 2.75 1.23 3 2.69 1.48 1 5 4 0.29 > > -0.96 > > EFEC_03_07 13 195 4.35 0.69 4 4.45 1.48 1 5 4 -0.95 > > 1.59 > > EFEC_05 14 195 4.53 0.59 5 4.60 0.00 3 5 2 -0.82 > > -0.34 > > EFEC_09_02 15 195 2.19 0.91 2 2.11 1.48 1 5 4 0.57 > > -0.03 > > EFEC_16_03 16 195 4.21 0.77 4 4.29 1.48 2 5 3 -0.71 > > -0.04 > > EVA_02_01 17 195 4.47 0.61 5 4.54 0.00 3 5 2 -0.70 > > -0.50 > > EVA_07_01 18 195 4.38 0.60 4 4.43 1.48 3 5 2 -0.40 > > -0.70 > > EVA_12_02 19 195 2.64 1.22 2 2.59 1.48 1 5 4 0.30 > > -1.00 > > EVA_15_06 20 195 4.19 0.74 4 4.26 1.48 2 5 3 -0.55 > > -0.29 > > FLX_04_01 21 195 4.32 0.69 4 4.41 1.48 2 5 3 -0.71 > > 0.05 > > FLX_04_05 22 195 4.23 0.74 4 4.32 0.00 1 5 4 -0.99 > > 1.69 > > FLX_08_02 23 195 2.87 1.19 3 2.86 1.48 1 5 4 0.07 > > -1.05 > > FLX_10_03 24 195 4.30 0.71 4 4.39 1.48 2 5 3 -0.84 > > 0.66 > > IDO_01_06 25 195 3.10 1.26 3 3.13 1.48 1 5 4 -0.19 > > -1.08 > > IDO_05_02 26 195 2.89 1.26 3 2.87 1.48 1 5 4 -0.03 > > -1.16 > > IDO_09_03 27 195 3.87 0.97 4 3.99 1.48 1 5 4 -0.84 > > 0.47 > > IDO_17_01 28 195 3.94 0.88 4 4.02 0.00 1 5 4 -0.93 > > 1.23 > > IE_01_03 29 195 4.01 0.88 4 4.10 1.48 1 5 4 -0.91 > > 0.94 > > IE_10_03 30 195 4.15 1.00 4 4.34 1.48 1 5 4 -1.31 > > 1.28 > > IE_13_03 31 195 4.16 0.91 4 4.30 1.48 1 5 4 -1.26 > > 1.74 > > IE_15_01 32 195 4.26 0.85 4 4.39 1.48 1 5 4 -1.16 > > 1.08 > > LC_07_03 33 195 4.25 0.72 4 4.34 0.00 1 5 4 -1.07 > > 2.64 > > LC_08_02 34 195 3.25 1.22 4 3.31 1.48 1 5 4 -0.41 > > -0.90 > > LC_11_03 35 195 3.50 1.14 4 3.56 1.48 1 5 4 -0.38 > > -0.68 > > LC_11_05 36 195 4.42 0.69 5 4.52 0.00 1 5 4 -1.14 > > 1.97 > > ME_02_03 37 195 4.11 0.92 4 4.25 1.48 1 5 4 -1.18 > > 1.29 > > ME_07_06 38 195 3.19 1.28 3 3.24 1.48 1 5 4 -0.28 > > -1.03 > > ME_09_01 39 195 4.24 0.77 4 4.34 1.48 1 5 4 -1.12 > > 2.19 > > ME_09_06 40 195 3.23 1.33 4 3.29 1.48 1 5 4 -0.31 > > -1.14 > > NEG_01_03 41 195 4.18 0.76 4 4.27 0.00 1 5 4 -1.28 > > 3.33 > > NEG_05_04 42 195 4.27 0.69 4 4.35 0.00 1 5 4 -0.87 > > 1.75 > > NEG_07_03 43 195 4.32 0.73 4 4.43 1.48 1 5 4 -1.05 > > 1.55 > > NEG_08_01 44 195 3.95 0.88 4 4.02 1.48 1 5 4 -0.67 > > 0.29 > > OP_03_05 45 195 4.32 0.66 4 4.39 0.00 1 5 4 -0.99 > > 2.54 > > OP_12_01 46 195 4.16 0.80 4 4.25 1.48 1 5 4 -1.02 > > 1.57 > > OP_14_01 47 195 4.27 0.78 4 4.38 1.48 1 5 4 -1.15 > > 1.67 > > OP_14_02 48 195 4.36 0.68 4 4.44 1.48 1 5 4 -1.07 > > 2.35 > > ORL_01_03 49 195 4.36 0.77 4 4.49 1.48 1 5 4 -1.31 > > 2.08 > > ORL_03_01 50 195 4.41 0.69 4 4.50 1.48 1 5 4 -1.28 > > 2.77 > > ORL_03_05 51 195 4.36 0.74 4 4.48 1.48 2 5 3 -1.13 > > 1.28 > > ORL_10_05 52 195 4.40 0.68 4 4.48 1.48 1 5 4 -1.18 > > 2.57 > > PER_08_02 53 195 3.23 1.29 4 3.29 1.48 1 5 4 -0.26 > > -1.17 > > PER_16_01 54 195 4.29 0.70 4 4.38 1.48 2 5 3 -0.74 > > 0.27 > > PER_19_06 55 195 3.19 1.25 3 3.24 1.48 1 5 4 -0.20 > > -1.06 > > PER_22_06 56 195 4.21 0.73 4 4.29 0.00 1 5 4 -0.89 > > 1.46 > > PLA_01_03 57 195 4.23 0.68 4 4.31 0.00 2 5 3 -0.81 > > 1.18 > > PLA_05_01 58 195 4.06 0.77 4 4.13 0.00 1 5 4 -0.89 > > 1.29 > > PLA_07_02 59 195 2.94 1.19 3 2.94 1.48 1 5 4 0.00 > > -1.02 > > PLA_10_01 60 195 4.03 0.76 4 4.08 0.00 1 5 4 -0.68 > > 0.87 > > PLA_12_02 61 195 2.67 1.11 2 2.62 1.48 1 5 4 0.41 > > -0.61 > > PLA_18_01 62 195 4.01 0.85 4 4.09 1.48 1 5 4 -0.82 > > 0.78 > > PR_06_02 63 195 3.02 1.27 3 3.02 1.48 1 5 4 -0.01 > > -1.13 > > PR_15_03 64 195 3.55 1.07 4 3.62 1.48 1 5 4 -0.46 > > -0.22 > > PR_25_01 65 195 2.36 1.04 2 2.27 1.48 1 5 4 0.73 > > 0.06 > > PR_25_06 66 195 2.95 1.17 3 2.94 1.48 1 5 4 0.04 > > -0.86 > > REL_09_05 67 195 3.81 0.95 4 3.89 1.48 1 5 4 -0.51 > > -0.31 > > REL_14_03 68 195 3.99 0.88 4 4.08 1.48 1 5 4 -0.75 > > 0.39 > > REL_14_06 69 195 2.93 1.26 3 2.92 1.48 1 5 4 0.06 > > -1.11 > > REL_16_04 70 195 3.16 1.27 3 3.20 1.48 1 5 4 -0.13 > > -1.11 > > RS_02_03 71 195 4.14 0.75 4 4.22 0.00 1 5 4 -0.82 > > 1.14 > > RS_07_05 72 195 4.29 0.67 4 4.38 0.00 2 5 3 -0.72 > > 0.59 > > RS_08_05 73 195 4.04 0.88 4 4.13 1.48 1 5 4 -0.97 > > 1.26 > > RS_13_03 74 195 4.19 0.69 4 4.25 0.00 2 5 3 -0.46 > > -0.17 > > TF_03_01 75 195 4.01 0.82 4 4.06 1.48 1 5 4 -0.63 > > 0.32 > > TF_04_01 76 195 4.09 0.76 4 4.15 0.00 1 5 4 -0.70 > > 0.76 > > TF_10_03 77 195 4.11 0.85 4 4.21 1.48 1 5 4 -0.96 > > 0.99 > > TF_12_01 78 195 4.11 0.85 4 4.21 1.48 1 5 4 -1.10 > > 1.66 > > TRE_09_05 79 195 4.29 0.79 4 4.39 1.48 1 5 4 -1.12 > > 1.74 > > TRE_09_06 80 195 4.33 0.69 4 4.42 1.48 1 5 4 -1.10 > > 2.36 > > TRE_26_04 81 195 2.97 1.20 3 2.96 1.48 1 5 4 0.08 > > -1.01 > > TRE_26_05 82 195 3.99 0.84 4 4.03 1.48 1 5 4 -0.41 > > -0.37 > > > > ``` > > > > Until now, I have charged the libraries, import the my own database and > did > > some simple descriptive statistics. > > > > ``` > > > > > r9 <- my.data > > > omega(r9) > > Omega > > Call: omega(m = r9) > > Alpha: 0.95 > > G.6: 0.98 > > Omega Hierarchical: 0.85 > > Omega H asymptotic: 0.89 > > Omega Total 0.96 > > > > Schmid Leiman Factor loadings greater than 0.2 > > g F1* F2* F3* h2 u2 p2 > > AUT_10_04 0.43 0.30 0.27 0.73 0.68 > > AUN_07_01 0.05 0.95 0.53 > > AUN_07_02 0.06 0.94 0.26 > > AUN_09_01 0.38 0.30 0.24 0.76 0.59 > > AUN_10_01 0.35 0.55 0.44 0.56 0.29 > > AUT_11_01 0.42 0.30 0.27 0.73 0.66 > > AUT_17_01 0.32 0.40 0.28 0.72 0.37 > > AUT_20_03 0.41 0.25 0.24 0.76 0.73 > > CRE_05_02- 0.24 -0.53 0.34 0.66 0.17 > > CRE_07_04- 0.37 -0.51 0.39 0.61 0.35 > > CRE_10_01 0.46 0.48 0.46 0.54 0.47 > > CRE_16_02- -0.70 0.48 0.52 0.01 > > EFEC_03_07 0.46 0.31 0.31 0.69 0.68 > > EFEC_05 0.43 0.32 0.29 0.71 0.64 > > EFEC_09_02- 0.29 -0.46 0.29 0.71 0.28 > > EFEC_16_03 0.49 0.26 0.31 0.69 0.77 > > EVA_02_01 0.55 0.21 0.36 0.64 0.85 > > EVA_07_01 0.57 0.37 0.63 0.89 > > EVA_12_02- -0.61 0.39 0.61 0.06 > > EVA_15_06 0.50 0.37 0.39 0.61 0.65 > > FLX_04_01 0.57 0.30 0.42 0.58 0.78 > > FLX_04_05 0.52 0.26 0.34 0.66 0.80 > > FLX_08_02- -0.78 0.60 0.40 0.00 > > FLX_10_03 0.39 0.29 0.24 0.76 0.63 > > IDO_01_06- -0.80 0.64 0.36 0.00 > > IDO_05_02- -0.78 0.62 0.38 0.00 > > IDO_09_03 0.41 0.49 0.42 0.58 0.40 > > IDO_17_01 0.51 0.51 0.54 0.46 0.49 > > IE_01_03 0.44 0.60 0.56 0.44 0.35 > > IE_10_03 0.41 0.53 0.44 0.56 0.37 > > IE_13_03 0.39 0.48 0.38 0.62 0.40 > > IE_15_01 0.39 0.40 0.31 0.69 0.49 > > LC_07_03 0.50 0.27 0.73 0.91 > > LC_08_02 0.83 0.69 0.31 0.00 > > LC_11_03 0.25 0.10 0.90 0.60 > > LC_11_05 0.45 0.24 0.27 0.73 0.75 > > ME_02_03 0.55 0.31 0.69 0.99 > > ME_07_06 0.85 0.75 0.25 0.02 > > ME_09_01 0.64 0.45 0.55 0.93 > > ME_09_06 0.81 0.69 0.31 0.02 > > NEG_01_03 0.58 0.20 0.38 0.62 0.88 > > NEG_05_04 0.70 0.50 0.50 0.98 > > NEG_07_03 0.64 0.43 0.57 0.96 > > NEG_08_01 0.43 0.25 0.25 0.75 0.74 > > OP_03_05 0.62 0.40 0.60 0.98 > > OP_12_01 0.67 0.46 0.54 0.98 > > OP_14_01 0.60 0.38 0.62 0.95 > > OP_14_02 0.66 0.47 0.53 0.93 > > ORL_01_03 0.67 0.47 0.53 0.96 > > ORL_03_01 0.66 0.48 0.52 0.91 > > ORL_03_05 0.64 0.46 0.54 0.90 > > ORL_10_05 0.66 0.49 0.51 0.89 > > PER_08_02 0.21 0.84 0.75 0.25 0.06 > > PER_16_01 0.68 0.21 0.50 0.50 0.91 > > PER_19_06 0.20 0.73 0.58 0.42 0.07 > > PER_22_06 0.53 0.30 0.70 0.94 > > PLA_01_03 0.57 0.36 0.64 0.89 > > PLA_05_01 0.61 0.42 0.58 0.89 > > PLA_07_02 0.75 0.61 0.39 0.04 > > PLA_10_01 0.56 0.36 0.64 0.88 > > PLA_12_02 0.61 0.37 0.63 0.00 > > PLA_18_01 0.63 0.47 0.53 0.85 > > PR_06_02 0.77 0.62 0.38 0.03 > > PR_15_03 0.31 -0.39 0.24 0.31 0.69 0.31 > > PR_25_01- -0.56 0.32 0.68 0.00 > > PR_25_06 0.74 0.55 0.45 0.01 > > REL_09_05 0.41 -0.23 0.38 0.37 0.63 0.45 > > REL_14_03 0.41 -0.21 0.29 0.30 0.70 0.56 > > REL_14_06 0.66 0.21 0.48 0.52 0.04 > > REL_16_04 0.78 0.63 0.37 0.03 > > RS_02_03 0.57 0.36 0.64 0.90 > > RS_07_05 0.68 0.47 0.53 0.99 > > RS_08_05 0.44 0.20 0.80 0.95 > > RS_13_03 0.67 0.46 0.54 0.97 > > TF_03_01 0.66 0.44 0.56 0.98 > > TF_04_01 0.74 0.56 0.44 0.98 > > TF_10_03 0.70 0.50 0.50 0.98 > > TF_12_01 0.61 0.40 0.60 0.92 > > TRE_09_05 0.70 0.23 0.55 0.45 0.89 > > TRE_09_06 0.62 0.41 0.59 0.93 > > TRE_26_04- -0.68 0.47 0.53 0.00 > > TRE_26_05 0.55 -0.21 0.34 0.66 0.88 > > > > With eigenvalues of: > > g F1* F2* F3* > > 18.06 0.04 11.47 4.32 > > > > general/max 1.57 max/min = 267.1 > > mean percent general = 0.58 with sd = 0.36 and cv of 0.63 > > Explained Common Variance of the general factor = 0.53 > > > > The degrees of freedom are 3078 and the fit is 34.62 > > The number of observations was 195 with Chi Square = 5671.12 with > prob > > < 2.8e-157 > > The root mean square of the residuals is 0.06 > > The df corrected root mean square of the residuals is 0.06 > > RMSEA index = 0.078 and the 10 % confidence intervals are 0.063 NA > > BIC = -10559.18 > > > > Compare this with the adequacy of just a general factor and no group > factors > > The degrees of freedom for just the general factor are 3239 and the fit > is > > 51.52 > > The number of observations was 195 with Chi Square = 8509.84 with > prob > > < 0 > > The root mean square of the residuals is 0.16 > > The df corrected root mean square of the residuals is 0.16 > > > > RMSEA index = 0.104 and the 10 % confidence intervals are 0.089 NA > > BIC = -8569.4 > > > > Measures of factor score adequacy > > g F1* F2* F3* > > Correlation of scores with factors 0.98 0.07 0.98 0.91 > > Multiple R square of scores with factors 0.95 0.00 0.97 0.83 > > Minimum correlation of factor score estimates 0.91 -0.99 0.94 0.66 > > > > Total, General and Subset omega for each subset > > g F1* F2* F3* > > Omega total for total scores and subscales 0.96 NA 0.83 0.95 > > Omega general for total scores and subscales 0.85 NA 0.82 0.76 > > Omega group for total scores and subscales 0.09 NA 0.01 0.19 > > ``` > > > > Now, until here, I apply the basic (non hierarchical) omega() function to > > my own database > > > > > > ``` > > > omegaSem(r9,n.obs=198) > > Error in parse(text = x, keep.source = FALSE) : > > <text>:2:0: unexpected end of input > > 1: ~ > > ``` > > The previous is the error message that appears after trying to use the > > omegaSem() function directly with my own database. > > > > Now, following, I present the expected output of omegaSem() applied > > directly using the Thurstone database. It's similar to the output of the > > basic omega() function but it has certain distinctions: > > > > ``` > > > > > r9 <- Thurstone > > > omegaSem(r9,n.obs=500) > > > > Call: omegaSem(m = r9, n.obs = 500) > > Omega > > Call: omega(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip, > > digits = digits, title = title, sl = sl, labels = labels, > > plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = > option) > > Alpha: 0.89 > > G.6: 0.91 > > Omega Hierarchical: 0.74 > > Omega H asymptotic: 0.79 > > Omega Total 0.93 > > > > Schmid Leiman Factor loadings greater than 0.2 > > g F1* F2* F3* h2 u2 p2 > > Sentences 0.71 0.56 0.82 0.18 0.61 > > Vocabulary 0.73 0.55 0.84 0.16 0.63 > > Sent.Completion 0.68 0.52 0.74 0.26 0.63 > > First.Letters 0.65 0.56 0.73 0.27 0.57 > > Four.Letter.Words 0.62 0.49 0.63 0.37 0.61 > > Suffixes 0.56 0.41 0.50 0.50 0.63 > > Letter.Series 0.59 0.62 0.73 0.27 0.48 > > Pedigrees 0.58 0.24 0.34 0.51 0.49 0.66 > > Letter.Group 0.54 0.46 0.52 0.48 0.56 > > > > With eigenvalues of: > > g F1* F2* F3* > > 3.58 0.96 0.74 0.72 > > > > general/max 3.73 max/min = 1.34 > > mean percent general = 0.6 with sd = 0.05 and cv of 0.09 > > Explained Common Variance of the general factor = 0.6 > > > > The degrees of freedom are 12 and the fit is 0.01 > > The number of observations was 500 with Chi Square = 7.12 with prob < > > 0.85 > > The root mean square of the residuals is 0.01 > > The df corrected root mean square of the residuals is 0.01 > > RMSEA index = 0 and the 10 % confidence intervals are 0 0.026 > > BIC = -67.45 > > > > Compare this with the adequacy of just a general factor and no group > factors > > The degrees of freedom for just the general factor are 27 and the fit is > > 1.48 > > The number of observations was 500 with Chi Square = 730.93 with > prob < > > 1.3e-136 > > The root mean square of the residuals is 0.14 > > The df corrected root mean square of the residuals is 0.16 > > > > RMSEA index = 0.23 and the 10 % confidence intervals are 0.214 0.243 > > BIC = 563.14 > > > > Measures of factor score adequacy > > g F1* F2* F3* > > Correlation of scores with factors 0.86 0.73 0.72 0.75 > > Multiple R square of scores with factors 0.74 0.54 0.51 0.57 > > Minimum correlation of factor score estimates 0.49 0.07 0.03 0.13 > > > > Total, General and Subset omega for each subset > > g F1* F2* F3* > > Omega total for total scores and subscales 0.93 0.92 0.83 0.79 > > Omega general for total scores and subscales 0.74 0.58 0.50 0.47 > > Omega group for total scores and subscales 0.16 0.34 0.32 0.32 > > > > The following analyses were done using the lavaan package > > > > Omega Hierarchical from a confirmatory model using sem = 0.79 > > Omega Total from a confirmatory model using sem = 0.93 > > With loadings of > > g F1* F2* F3* h2 u2 p2 > > Sentences 0.77 0.49 0.83 0.17 0.71 > > Vocabulary 0.79 0.45 0.83 0.17 0.75 > > Sent.Completion 0.75 0.40 0.73 0.27 0.77 > > First.Letters 0.61 0.61 0.75 0.25 0.50 > > Four.Letter.Words 0.60 0.51 0.61 0.39 0.59 > > Suffixes 0.57 0.39 0.48 0.52 0.68 > > Letter.Series 0.57 0.73 0.85 0.15 0.38 > > Pedigrees 0.66 0.25 0.50 0.50 0.87 > > Letter.Group 0.53 0.41 0.45 0.55 0.62 > > > > With eigenvalues of: > > g F1* F2* F3* > > 3.87 0.60 0.79 0.76 > > > > The degrees of freedom of the confimatory model are 18 and the fit is > > 57.11391 with p = 5.936744e-06 > > general/max 4.92 max/min = 1.3 > > mean percent general = 0.65 with sd = 0.15 and cv of 0.23 > > Explained Common Variance of the general factor = 0.64 > > > > Measures of factor score adequacy > > g F1* F2* F3* > > Correlation of scores with factors 0.90 0.68 0.80 0.85 > > Multiple R square of scores with factors 0.81 0.46 0.64 0.73 > > Minimum correlation of factor score estimates 0.62 -0.08 0.27 0.45 > > > > Total, General and Subset omega for each subset > > g F1* F2* F3* > > Omega total for total scores and subscales 0.93 0.92 0.82 0.80 > > Omega general for total scores and subscales 0.79 0.69 0.48 0.50 > > Omega group for total scores and subscales 0.14 0.23 0.35 0.31 > > > > To get the standard sem fit statistics, ask for summary on the fitted > > object> > > ``` > > > > > > > > I'm expecting to have the same output applying the function directly. My > > expectation is to make sure if its mandatory to make the schmid > > transformation before the omegaSem(). I'm supposing that not, because its > > not supposed to work like that as it says in the guide. Maybe this can be > > solved correcting the error message: > > > > ``` > > > r9 <- my.data > > > omegaSem(r9,n.obs=198) > > Error in parse(text = x, keep.source = FALSE) : > > <text>:2:0: unexpected end of input > > 1: ~ > > ^ > > ``` > > Hope I've been clear enough. Feel free to ask any other information that > > you might need. > > > > Thank you so much for giving me any guidance to reach the answer of this > > issue. I higly appreciate any help. > > > > Regards, > > > > Danilo > > > > -- > > Danilo E. Rodríguez Zapata > > Analista en Psicometría > > CEBIAC > > > > [[alternative HTML version deleted]] > > > > ______________________________________________ > > R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see > > https://stat.ethz.ch/mailman/listinfo/r-help > > PLEASE do read the posting guide > http://www.R-project.org/posting-guide.html > > and provide commented, minimal, self-contained, reproducible code. > > > > > > -- > > Danilo E. Rodríguez Zapata > > Analista en Psicometría > > CEBIAC > > > > > > -- > > Danilo E. Rodríguez Zapata > > Analista en Psicometría > > CEBIAC > > William Revelle personality-project.org/revelle.html > Professor personality-project.org > Department of Psychology www.wcas.northwestern.edu/psych/ > Northwestern University www.northwestern.edu/ > Use R for psychology personality-project.org/r > It is 2 minutes to midnight www.thebulletin.org > > > > > > > > -- Danilo E. Rodríguez Zapata Analista en Psicometría CEBIAC [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.