Please use 'reply to all' for responses to R-help reponses. What do you get with your original data for psych::omega(my.data)$model$lavaan ? Any entries like "F3=~"?
Bill Dunlap TIBCO Software wdunlap tibco.com On Thu, Aug 29, 2019 at 12:05 PM Danilo Esteban Rodriguez Zapata < danilo_rodrig...@cun.edu.co> wrote: > Dear William, > > Thank you for your answer, I would like to add some information that I > just obtained looking in different sites and forums. Someone there ask me > to create a fake data file, so I did that from my original data file. What > I did was open the .csv file with notepad and replace all the 4 for 5 and > the 2 for 1, then I saved the file again with no other changes. I also > searched for the "~" in the file and I found nothing. Now with that file I > did the omegaSem() function and it worked succesfully, so the weird thing > here is that the omegaSem() function works with the fake data file, wich is > exactly the same as the original file, but recoding some answers as I said. > > It seems to be an issue with the file. When I replace, lets say, the 5 for > 6 and make the omegaSem() again, it works. Then I replace back again the 6 > for 5 in all the data and the function doesn't works anymore. > > El jue., 29 ago. 2019 a las 12:33, William Dunlap (<wdun...@tibco.com>) > escribió: > >> > omegaSem(r9,n.obs=198) >> Error in parse(text = x, keep.source = FALSE) : >> <text>:2:0: unexpected end of input >> >> This error probably comes from calling factor("~") and >> psych::omegaSem(data) will do that if all the columns in data are very >> highly correlated with one another. In that case omega(data, nfactor=n) >> will not be able to find n factors in the data but it returns "~" in place >> of the factors that it could not find. E.g., >> > fakeData <- data.frame(A=1/(1:40), B=1/(2:41), C=1/(3:42), D=1/(4:43), >> E=1/(5:44)) >> > cor(fakeData) >> A B C D E >> A 1.0000000 0.9782320 0.9481293 0.9215071 0.8988962 >> B 0.9782320 1.0000000 0.9932037 0.9811287 0.9684658 >> C 0.9481293 0.9932037 1.0000000 0.9969157 0.9906838 >> D 0.9215071 0.9811287 0.9969157 1.0000000 0.9983014 >> E 0.8988962 0.9684658 0.9906838 0.9983014 1.0000000 >> > psych::omegaSem(fakeData) >> Loading required namespace: lavaan >> Loading required namespace: GPArotation >> In factor.stats, I could not find the RMSEA upper bound . Sorry about that >> Error in parse(text = x, keep.source = FALSE) : >> <text>:2:0: unexpected end of input >> 1: ~ >> ^ >> In addition: Warning message: >> In cov2cor(t(w) %*% r %*% w) : >> diag(.) had 0 or NA entries; non-finite result is doubtful >> > psych::omega(fakeData)$model$lavaan >> In factor.stats, I could not find the RMSEA upper bound . Sorry about that >> [1] g =~ +A+B+C+D+E F1=~ + B + C + D + E F2=~ + A >> [4] F3=~ >> Warning message: >> In cov2cor(t(w) %*% r %*% w) : >> diag(.) had 0 or NA entries; non-finite result is doubtful >> >> You can get a result if you use nfactors=n where n is the number of the >> good F<n> entries in psych::omega()$model$lavaan: >> > psych::omegaSem(fakeData, nfactors=2) >> ... >> >> Measures of factor score adequacy >> g F1* F2* >> Correlation of scores with factors 11.35 12.42 84.45 >> Multiple R square of scores with factors 128.93 154.32 7131.98 >> Minimum correlation of factor score estimates 256.86 307.64 14262.96 >> ... >> Does that work with your data? >> >> This is a problem that the maintainer of psych, >> > maintainer("psych") >> [1] "William Revelle <reve...@northwestern.edu>" >> would like to know about. >> >> >> >> >> >> >> Bill Dunlap >> TIBCO Software >> wdunlap tibco.com >> >> >> On Thu, Aug 29, 2019 at 9:03 AM Danilo Esteban Rodriguez Zapata via >> R-help <r-help@r-project.org> wrote: >> >>> This is a problem related to my last question referred to the omegaSem() >>> function in the psych package (that is already solved because I realized >>> that I was missing a variable assignment and because of that I had an >>> 'object not found' error: >>> >>> >>> https://stackoverflow.com/questions/57661750/one-of-the-omegasem-function-arguments-is-an-object-not-found >>> >>> I was trying to use that function following the guide to find McDonald's >>> hierarchical Omega by Dr William Revelle: >>> >>> http://personality-project.org/r/psych/HowTo/omega.pdf >>> >>> So now, with the variable error corrected, I'm having a different error >>> that does not occur when I use the same function with the example >>> database >>> (Thurstone) provided in the tutorial that comes with the psych package. I >>> mean, I'm able to use the function succesfully using the Thurstone data >>> (with no other action, I have the expected result) but the function >>> doesn't >>> work when I use my own data. >>> >>> I searched over other posted questions, and the actions that they perform >>> are not even similar to what I'm trying to do. I have almost two weeks >>> using R, so I'm not able to identify yet how can I extrapolate the >>> solutions for that error message to my procedure (because it seems to be >>> frequent), although I have basic code knowledge. However related >>> questions >>> give no anwer by now. >>> >>> Additionally, I decided to look over more documentation about the >>> package, >>> and when I was testing other functions, I was able to use the omegaSem() >>> function with another example database, BUT after and only after I did >>> the >>> schmid transformation. So with that, I discovered that when I tried to >>> use >>> the omegaSem() function before the schmid tranformation I had the same >>> error message, but not after that tranformation with this second example >>> database. >>> >>> This make sense with the actual procedure of the omegaSem() procedure, >>> but >>> I'm suposing that it must be done completely and automatically by the >>> omegaSem() function as it is explained in the guide and I have understood >>> until now, as it follows: >>> >>> 1. omegaSem() applies factor analysis >>> 2. omegaSem() rotate factors obliquely >>> 3. omegaSem() transform data with Schmid Leiman (schmid) >>> >>> -------necessary steps to print output------------------- >>> >>> 4. omegaSem() print McDonald's hierarchical Omega >>> >>> So here, another questions appears: - Why the omegaSem() function works >>> with the Thurstone database without any other action and only works for >>> the >>> second example database after performing the schmid transformation? - >>> Why >>> with other databases I dont have the same output applying the omegaSem() >>> function directly? - How is this related to the error message that the >>> compiler shows when I try to apply the function directly to the database? >>> >>> >>> This is the code that I'm using now: (example of the succesfull >>> omegaSem() >>> done after schmid tranformation not included) >>> >>> ``` >>> > library(psych) >>> > library(ctv, lavaan) >>> > library(GPArotation) >>> > my.data <- read.file() >>> Data from the .csv file >>> D:\Users\Admon\Documents\prueba_export_1563806208742.csv has been loaded. >>> > describe(my.data) >>> vars n mean sd median trimmed mad min max range skew >>> kurtosis >>> AUT_10_04 1 195 4.11 0.90 4 4.23 1.48 1 5 4 -0.92 >>> 0.33 >>> AUN_07_01 2 195 3.79 1.14 4 3.90 1.48 1 5 4 -0.59 >>> -0.71 >>> AUN_07_02 3 195 3.58 1.08 4 3.65 1.48 1 5 4 -0.39 >>> -0.56 >>> AUN_09_01 4 195 4.15 0.80 4 4.23 1.48 1 5 4 -0.76 >>> 0.51 >>> AUN_10_01 5 195 4.25 0.79 4 4.34 1.48 1 5 4 -0.91 >>> 0.74 >>> AUT_11_01 6 195 4.43 0.77 5 4.56 0.00 1 5 4 -1.69 >>> 3.77 >>> AUT_17_01 7 195 4.46 0.67 5 4.55 0.00 1 5 4 -1.34 >>> 2.96 >>> AUT_20_03 8 195 4.44 0.65 5 4.53 0.00 2 5 3 -0.84 >>> 0.12 >>> CRE_05_02 9 195 2.47 1.01 2 2.43 1.48 1 5 4 0.35 >>> -0.46 >>> CRE_07_04 10 195 2.42 1.08 2 2.34 1.48 1 5 4 0.51 >>> -0.43 >>> CRE_10_01 11 195 4.41 0.68 5 4.51 0.00 2 5 3 -0.79 >>> -0.12 >>> CRE_16_02 12 195 2.75 1.23 3 2.69 1.48 1 5 4 0.29 >>> -0.96 >>> EFEC_03_07 13 195 4.35 0.69 4 4.45 1.48 1 5 4 -0.95 >>> 1.59 >>> EFEC_05 14 195 4.53 0.59 5 4.60 0.00 3 5 2 -0.82 >>> -0.34 >>> EFEC_09_02 15 195 2.19 0.91 2 2.11 1.48 1 5 4 0.57 >>> -0.03 >>> EFEC_16_03 16 195 4.21 0.77 4 4.29 1.48 2 5 3 -0.71 >>> -0.04 >>> EVA_02_01 17 195 4.47 0.61 5 4.54 0.00 3 5 2 -0.70 >>> -0.50 >>> EVA_07_01 18 195 4.38 0.60 4 4.43 1.48 3 5 2 -0.40 >>> -0.70 >>> EVA_12_02 19 195 2.64 1.22 2 2.59 1.48 1 5 4 0.30 >>> -1.00 >>> EVA_15_06 20 195 4.19 0.74 4 4.26 1.48 2 5 3 -0.55 >>> -0.29 >>> FLX_04_01 21 195 4.32 0.69 4 4.41 1.48 2 5 3 -0.71 >>> 0.05 >>> FLX_04_05 22 195 4.23 0.74 4 4.32 0.00 1 5 4 -0.99 >>> 1.69 >>> FLX_08_02 23 195 2.87 1.19 3 2.86 1.48 1 5 4 0.07 >>> -1.05 >>> FLX_10_03 24 195 4.30 0.71 4 4.39 1.48 2 5 3 -0.84 >>> 0.66 >>> IDO_01_06 25 195 3.10 1.26 3 3.13 1.48 1 5 4 -0.19 >>> -1.08 >>> IDO_05_02 26 195 2.89 1.26 3 2.87 1.48 1 5 4 -0.03 >>> -1.16 >>> IDO_09_03 27 195 3.87 0.97 4 3.99 1.48 1 5 4 -0.84 >>> 0.47 >>> IDO_17_01 28 195 3.94 0.88 4 4.02 0.00 1 5 4 -0.93 >>> 1.23 >>> IE_01_03 29 195 4.01 0.88 4 4.10 1.48 1 5 4 -0.91 >>> 0.94 >>> IE_10_03 30 195 4.15 1.00 4 4.34 1.48 1 5 4 -1.31 >>> 1.28 >>> IE_13_03 31 195 4.16 0.91 4 4.30 1.48 1 5 4 -1.26 >>> 1.74 >>> IE_15_01 32 195 4.26 0.85 4 4.39 1.48 1 5 4 -1.16 >>> 1.08 >>> LC_07_03 33 195 4.25 0.72 4 4.34 0.00 1 5 4 -1.07 >>> 2.64 >>> LC_08_02 34 195 3.25 1.22 4 3.31 1.48 1 5 4 -0.41 >>> -0.90 >>> LC_11_03 35 195 3.50 1.14 4 3.56 1.48 1 5 4 -0.38 >>> -0.68 >>> LC_11_05 36 195 4.42 0.69 5 4.52 0.00 1 5 4 -1.14 >>> 1.97 >>> ME_02_03 37 195 4.11 0.92 4 4.25 1.48 1 5 4 -1.18 >>> 1.29 >>> ME_07_06 38 195 3.19 1.28 3 3.24 1.48 1 5 4 -0.28 >>> -1.03 >>> ME_09_01 39 195 4.24 0.77 4 4.34 1.48 1 5 4 -1.12 >>> 2.19 >>> ME_09_06 40 195 3.23 1.33 4 3.29 1.48 1 5 4 -0.31 >>> -1.14 >>> NEG_01_03 41 195 4.18 0.76 4 4.27 0.00 1 5 4 -1.28 >>> 3.33 >>> NEG_05_04 42 195 4.27 0.69 4 4.35 0.00 1 5 4 -0.87 >>> 1.75 >>> NEG_07_03 43 195 4.32 0.73 4 4.43 1.48 1 5 4 -1.05 >>> 1.55 >>> NEG_08_01 44 195 3.95 0.88 4 4.02 1.48 1 5 4 -0.67 >>> 0.29 >>> OP_03_05 45 195 4.32 0.66 4 4.39 0.00 1 5 4 -0.99 >>> 2.54 >>> OP_12_01 46 195 4.16 0.80 4 4.25 1.48 1 5 4 -1.02 >>> 1.57 >>> OP_14_01 47 195 4.27 0.78 4 4.38 1.48 1 5 4 -1.15 >>> 1.67 >>> OP_14_02 48 195 4.36 0.68 4 4.44 1.48 1 5 4 -1.07 >>> 2.35 >>> ORL_01_03 49 195 4.36 0.77 4 4.49 1.48 1 5 4 -1.31 >>> 2.08 >>> ORL_03_01 50 195 4.41 0.69 4 4.50 1.48 1 5 4 -1.28 >>> 2.77 >>> ORL_03_05 51 195 4.36 0.74 4 4.48 1.48 2 5 3 -1.13 >>> 1.28 >>> ORL_10_05 52 195 4.40 0.68 4 4.48 1.48 1 5 4 -1.18 >>> 2.57 >>> PER_08_02 53 195 3.23 1.29 4 3.29 1.48 1 5 4 -0.26 >>> -1.17 >>> PER_16_01 54 195 4.29 0.70 4 4.38 1.48 2 5 3 -0.74 >>> 0.27 >>> PER_19_06 55 195 3.19 1.25 3 3.24 1.48 1 5 4 -0.20 >>> -1.06 >>> PER_22_06 56 195 4.21 0.73 4 4.29 0.00 1 5 4 -0.89 >>> 1.46 >>> PLA_01_03 57 195 4.23 0.68 4 4.31 0.00 2 5 3 -0.81 >>> 1.18 >>> PLA_05_01 58 195 4.06 0.77 4 4.13 0.00 1 5 4 -0.89 >>> 1.29 >>> PLA_07_02 59 195 2.94 1.19 3 2.94 1.48 1 5 4 0.00 >>> -1.02 >>> PLA_10_01 60 195 4.03 0.76 4 4.08 0.00 1 5 4 -0.68 >>> 0.87 >>> PLA_12_02 61 195 2.67 1.11 2 2.62 1.48 1 5 4 0.41 >>> -0.61 >>> PLA_18_01 62 195 4.01 0.85 4 4.09 1.48 1 5 4 -0.82 >>> 0.78 >>> PR_06_02 63 195 3.02 1.27 3 3.02 1.48 1 5 4 -0.01 >>> -1.13 >>> PR_15_03 64 195 3.55 1.07 4 3.62 1.48 1 5 4 -0.46 >>> -0.22 >>> PR_25_01 65 195 2.36 1.04 2 2.27 1.48 1 5 4 0.73 >>> 0.06 >>> PR_25_06 66 195 2.95 1.17 3 2.94 1.48 1 5 4 0.04 >>> -0.86 >>> REL_09_05 67 195 3.81 0.95 4 3.89 1.48 1 5 4 -0.51 >>> -0.31 >>> REL_14_03 68 195 3.99 0.88 4 4.08 1.48 1 5 4 -0.75 >>> 0.39 >>> REL_14_06 69 195 2.93 1.26 3 2.92 1.48 1 5 4 0.06 >>> -1.11 >>> REL_16_04 70 195 3.16 1.27 3 3.20 1.48 1 5 4 -0.13 >>> -1.11 >>> RS_02_03 71 195 4.14 0.75 4 4.22 0.00 1 5 4 -0.82 >>> 1.14 >>> RS_07_05 72 195 4.29 0.67 4 4.38 0.00 2 5 3 -0.72 >>> 0.59 >>> RS_08_05 73 195 4.04 0.88 4 4.13 1.48 1 5 4 -0.97 >>> 1.26 >>> RS_13_03 74 195 4.19 0.69 4 4.25 0.00 2 5 3 -0.46 >>> -0.17 >>> TF_03_01 75 195 4.01 0.82 4 4.06 1.48 1 5 4 -0.63 >>> 0.32 >>> TF_04_01 76 195 4.09 0.76 4 4.15 0.00 1 5 4 -0.70 >>> 0.76 >>> TF_10_03 77 195 4.11 0.85 4 4.21 1.48 1 5 4 -0.96 >>> 0.99 >>> TF_12_01 78 195 4.11 0.85 4 4.21 1.48 1 5 4 -1.10 >>> 1.66 >>> TRE_09_05 79 195 4.29 0.79 4 4.39 1.48 1 5 4 -1.12 >>> 1.74 >>> TRE_09_06 80 195 4.33 0.69 4 4.42 1.48 1 5 4 -1.10 >>> 2.36 >>> TRE_26_04 81 195 2.97 1.20 3 2.96 1.48 1 5 4 0.08 >>> -1.01 >>> TRE_26_05 82 195 3.99 0.84 4 4.03 1.48 1 5 4 -0.41 >>> -0.37 >>> >>> ``` >>> >>> Until now, I have charged the libraries, import the my own database and >>> did >>> some simple descriptive statistics. >>> >>> ``` >>> >>> > r9 <- my.data >>> > omega(r9) >>> Omega >>> Call: omega(m = r9) >>> Alpha: 0.95 >>> G.6: 0.98 >>> Omega Hierarchical: 0.85 >>> Omega H asymptotic: 0.89 >>> Omega Total 0.96 >>> >>> Schmid Leiman Factor loadings greater than 0.2 >>> g F1* F2* F3* h2 u2 p2 >>> AUT_10_04 0.43 0.30 0.27 0.73 0.68 >>> AUN_07_01 0.05 0.95 0.53 >>> AUN_07_02 0.06 0.94 0.26 >>> AUN_09_01 0.38 0.30 0.24 0.76 0.59 >>> AUN_10_01 0.35 0.55 0.44 0.56 0.29 >>> AUT_11_01 0.42 0.30 0.27 0.73 0.66 >>> AUT_17_01 0.32 0.40 0.28 0.72 0.37 >>> AUT_20_03 0.41 0.25 0.24 0.76 0.73 >>> CRE_05_02- 0.24 -0.53 0.34 0.66 0.17 >>> CRE_07_04- 0.37 -0.51 0.39 0.61 0.35 >>> CRE_10_01 0.46 0.48 0.46 0.54 0.47 >>> CRE_16_02- -0.70 0.48 0.52 0.01 >>> EFEC_03_07 0.46 0.31 0.31 0.69 0.68 >>> EFEC_05 0.43 0.32 0.29 0.71 0.64 >>> EFEC_09_02- 0.29 -0.46 0.29 0.71 0.28 >>> EFEC_16_03 0.49 0.26 0.31 0.69 0.77 >>> EVA_02_01 0.55 0.21 0.36 0.64 0.85 >>> EVA_07_01 0.57 0.37 0.63 0.89 >>> EVA_12_02- -0.61 0.39 0.61 0.06 >>> EVA_15_06 0.50 0.37 0.39 0.61 0.65 >>> FLX_04_01 0.57 0.30 0.42 0.58 0.78 >>> FLX_04_05 0.52 0.26 0.34 0.66 0.80 >>> FLX_08_02- -0.78 0.60 0.40 0.00 >>> FLX_10_03 0.39 0.29 0.24 0.76 0.63 >>> IDO_01_06- -0.80 0.64 0.36 0.00 >>> IDO_05_02- -0.78 0.62 0.38 0.00 >>> IDO_09_03 0.41 0.49 0.42 0.58 0.40 >>> IDO_17_01 0.51 0.51 0.54 0.46 0.49 >>> IE_01_03 0.44 0.60 0.56 0.44 0.35 >>> IE_10_03 0.41 0.53 0.44 0.56 0.37 >>> IE_13_03 0.39 0.48 0.38 0.62 0.40 >>> IE_15_01 0.39 0.40 0.31 0.69 0.49 >>> LC_07_03 0.50 0.27 0.73 0.91 >>> LC_08_02 0.83 0.69 0.31 0.00 >>> LC_11_03 0.25 0.10 0.90 0.60 >>> LC_11_05 0.45 0.24 0.27 0.73 0.75 >>> ME_02_03 0.55 0.31 0.69 0.99 >>> ME_07_06 0.85 0.75 0.25 0.02 >>> ME_09_01 0.64 0.45 0.55 0.93 >>> ME_09_06 0.81 0.69 0.31 0.02 >>> NEG_01_03 0.58 0.20 0.38 0.62 0.88 >>> NEG_05_04 0.70 0.50 0.50 0.98 >>> NEG_07_03 0.64 0.43 0.57 0.96 >>> NEG_08_01 0.43 0.25 0.25 0.75 0.74 >>> OP_03_05 0.62 0.40 0.60 0.98 >>> OP_12_01 0.67 0.46 0.54 0.98 >>> OP_14_01 0.60 0.38 0.62 0.95 >>> OP_14_02 0.66 0.47 0.53 0.93 >>> ORL_01_03 0.67 0.47 0.53 0.96 >>> ORL_03_01 0.66 0.48 0.52 0.91 >>> ORL_03_05 0.64 0.46 0.54 0.90 >>> ORL_10_05 0.66 0.49 0.51 0.89 >>> PER_08_02 0.21 0.84 0.75 0.25 0.06 >>> PER_16_01 0.68 0.21 0.50 0.50 0.91 >>> PER_19_06 0.20 0.73 0.58 0.42 0.07 >>> PER_22_06 0.53 0.30 0.70 0.94 >>> PLA_01_03 0.57 0.36 0.64 0.89 >>> PLA_05_01 0.61 0.42 0.58 0.89 >>> PLA_07_02 0.75 0.61 0.39 0.04 >>> PLA_10_01 0.56 0.36 0.64 0.88 >>> PLA_12_02 0.61 0.37 0.63 0.00 >>> PLA_18_01 0.63 0.47 0.53 0.85 >>> PR_06_02 0.77 0.62 0.38 0.03 >>> PR_15_03 0.31 -0.39 0.24 0.31 0.69 0.31 >>> PR_25_01- -0.56 0.32 0.68 0.00 >>> PR_25_06 0.74 0.55 0.45 0.01 >>> REL_09_05 0.41 -0.23 0.38 0.37 0.63 0.45 >>> REL_14_03 0.41 -0.21 0.29 0.30 0.70 0.56 >>> REL_14_06 0.66 0.21 0.48 0.52 0.04 >>> REL_16_04 0.78 0.63 0.37 0.03 >>> RS_02_03 0.57 0.36 0.64 0.90 >>> RS_07_05 0.68 0.47 0.53 0.99 >>> RS_08_05 0.44 0.20 0.80 0.95 >>> RS_13_03 0.67 0.46 0.54 0.97 >>> TF_03_01 0.66 0.44 0.56 0.98 >>> TF_04_01 0.74 0.56 0.44 0.98 >>> TF_10_03 0.70 0.50 0.50 0.98 >>> TF_12_01 0.61 0.40 0.60 0.92 >>> TRE_09_05 0.70 0.23 0.55 0.45 0.89 >>> TRE_09_06 0.62 0.41 0.59 0.93 >>> TRE_26_04- -0.68 0.47 0.53 0.00 >>> TRE_26_05 0.55 -0.21 0.34 0.66 0.88 >>> >>> With eigenvalues of: >>> g F1* F2* F3* >>> 18.06 0.04 11.47 4.32 >>> >>> general/max 1.57 max/min = 267.1 >>> mean percent general = 0.58 with sd = 0.36 and cv of 0.63 >>> Explained Common Variance of the general factor = 0.53 >>> >>> The degrees of freedom are 3078 and the fit is 34.62 >>> The number of observations was 195 with Chi Square = 5671.12 with >>> prob >>> < 2.8e-157 >>> The root mean square of the residuals is 0.06 >>> The df corrected root mean square of the residuals is 0.06 >>> RMSEA index = 0.078 and the 10 % confidence intervals are 0.063 NA >>> BIC = -10559.18 >>> >>> Compare this with the adequacy of just a general factor and no group >>> factors >>> The degrees of freedom for just the general factor are 3239 and the fit >>> is >>> 51.52 >>> The number of observations was 195 with Chi Square = 8509.84 with >>> prob >>> < 0 >>> The root mean square of the residuals is 0.16 >>> The df corrected root mean square of the residuals is 0.16 >>> >>> RMSEA index = 0.104 and the 10 % confidence intervals are 0.089 NA >>> BIC = -8569.4 >>> >>> Measures of factor score adequacy >>> g F1* F2* F3* >>> Correlation of scores with factors 0.98 0.07 0.98 0.91 >>> Multiple R square of scores with factors 0.95 0.00 0.97 0.83 >>> Minimum correlation of factor score estimates 0.91 -0.99 0.94 0.66 >>> >>> Total, General and Subset omega for each subset >>> g F1* F2* F3* >>> Omega total for total scores and subscales 0.96 NA 0.83 0.95 >>> Omega general for total scores and subscales 0.85 NA 0.82 0.76 >>> Omega group for total scores and subscales 0.09 NA 0.01 0.19 >>> ``` >>> >>> Now, until here, I apply the basic (non hierarchical) omega() function to >>> my own database >>> >>> >>> ``` >>> > omegaSem(r9,n.obs=198) >>> Error in parse(text = x, keep.source = FALSE) : >>> <text>:2:0: unexpected end of input >>> 1: ~ >>> ``` >>> The previous is the error message that appears after trying to use the >>> omegaSem() function directly with my own database. >>> >>> Now, following, I present the expected output of omegaSem() applied >>> directly using the Thurstone database. It's similar to the output of the >>> basic omega() function but it has certain distinctions: >>> >>> ``` >>> >>> > r9 <- Thurstone >>> > omegaSem(r9,n.obs=500) >>> >>> Call: omegaSem(m = r9, n.obs = 500) >>> Omega >>> Call: omega(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip, >>> digits = digits, title = title, sl = sl, labels = labels, >>> plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = >>> option) >>> Alpha: 0.89 >>> G.6: 0.91 >>> Omega Hierarchical: 0.74 >>> Omega H asymptotic: 0.79 >>> Omega Total 0.93 >>> >>> Schmid Leiman Factor loadings greater than 0.2 >>> g F1* F2* F3* h2 u2 p2 >>> Sentences 0.71 0.56 0.82 0.18 0.61 >>> Vocabulary 0.73 0.55 0.84 0.16 0.63 >>> Sent.Completion 0.68 0.52 0.74 0.26 0.63 >>> First.Letters 0.65 0.56 0.73 0.27 0.57 >>> Four.Letter.Words 0.62 0.49 0.63 0.37 0.61 >>> Suffixes 0.56 0.41 0.50 0.50 0.63 >>> Letter.Series 0.59 0.62 0.73 0.27 0.48 >>> Pedigrees 0.58 0.24 0.34 0.51 0.49 0.66 >>> Letter.Group 0.54 0.46 0.52 0.48 0.56 >>> >>> With eigenvalues of: >>> g F1* F2* F3* >>> 3.58 0.96 0.74 0.72 >>> >>> general/max 3.73 max/min = 1.34 >>> mean percent general = 0.6 with sd = 0.05 and cv of 0.09 >>> Explained Common Variance of the general factor = 0.6 >>> >>> The degrees of freedom are 12 and the fit is 0.01 >>> The number of observations was 500 with Chi Square = 7.12 with prob < >>> 0.85 >>> The root mean square of the residuals is 0.01 >>> The df corrected root mean square of the residuals is 0.01 >>> RMSEA index = 0 and the 10 % confidence intervals are 0 0.026 >>> BIC = -67.45 >>> >>> Compare this with the adequacy of just a general factor and no group >>> factors >>> The degrees of freedom for just the general factor are 27 and the fit is >>> 1.48 >>> The number of observations was 500 with Chi Square = 730.93 with >>> prob < >>> 1.3e-136 >>> The root mean square of the residuals is 0.14 >>> The df corrected root mean square of the residuals is 0.16 >>> >>> RMSEA index = 0.23 and the 10 % confidence intervals are 0.214 0.243 >>> BIC = 563.14 >>> >>> Measures of factor score adequacy >>> g F1* F2* F3* >>> Correlation of scores with factors 0.86 0.73 0.72 0.75 >>> Multiple R square of scores with factors 0.74 0.54 0.51 0.57 >>> Minimum correlation of factor score estimates 0.49 0.07 0.03 0.13 >>> >>> Total, General and Subset omega for each subset >>> g F1* F2* F3* >>> Omega total for total scores and subscales 0.93 0.92 0.83 0.79 >>> Omega general for total scores and subscales 0.74 0.58 0.50 0.47 >>> Omega group for total scores and subscales 0.16 0.34 0.32 0.32 >>> >>> The following analyses were done using the lavaan package >>> >>> Omega Hierarchical from a confirmatory model using sem = 0.79 >>> Omega Total from a confirmatory model using sem = 0.93 >>> With loadings of >>> g F1* F2* F3* h2 u2 p2 >>> Sentences 0.77 0.49 0.83 0.17 0.71 >>> Vocabulary 0.79 0.45 0.83 0.17 0.75 >>> Sent.Completion 0.75 0.40 0.73 0.27 0.77 >>> First.Letters 0.61 0.61 0.75 0.25 0.50 >>> Four.Letter.Words 0.60 0.51 0.61 0.39 0.59 >>> Suffixes 0.57 0.39 0.48 0.52 0.68 >>> Letter.Series 0.57 0.73 0.85 0.15 0.38 >>> Pedigrees 0.66 0.25 0.50 0.50 0.87 >>> Letter.Group 0.53 0.41 0.45 0.55 0.62 >>> >>> With eigenvalues of: >>> g F1* F2* F3* >>> 3.87 0.60 0.79 0.76 >>> >>> The degrees of freedom of the confimatory model are 18 and the fit is >>> 57.11391 with p = 5.936744e-06 >>> general/max 4.92 max/min = 1.3 >>> mean percent general = 0.65 with sd = 0.15 and cv of 0.23 >>> Explained Common Variance of the general factor = 0.64 >>> >>> Measures of factor score adequacy >>> g F1* F2* F3* >>> Correlation of scores with factors 0.90 0.68 0.80 0.85 >>> Multiple R square of scores with factors 0.81 0.46 0.64 0.73 >>> Minimum correlation of factor score estimates 0.62 -0.08 0.27 0.45 >>> >>> Total, General and Subset omega for each subset >>> g F1* F2* F3* >>> Omega total for total scores and subscales 0.93 0.92 0.82 0.80 >>> Omega general for total scores and subscales 0.79 0.69 0.48 0.50 >>> Omega group for total scores and subscales 0.14 0.23 0.35 0.31 >>> >>> To get the standard sem fit statistics, ask for summary on the fitted >>> object> >>> ``` >>> >>> >>> >>> I'm expecting to have the same output applying the function directly. My >>> expectation is to make sure if its mandatory to make the schmid >>> transformation before the omegaSem(). I'm supposing that not, because its >>> not supposed to work like that as it says in the guide. Maybe this can be >>> solved correcting the error message: >>> >>> ``` >>> > r9 <- my.data >>> > omegaSem(r9,n.obs=198) >>> Error in parse(text = x, keep.source = FALSE) : >>> <text>:2:0: unexpected end of input >>> 1: ~ >>> ^ >>> ``` >>> Hope I've been clear enough. Feel free to ask any other information that >>> you might need. >>> >>> Thank you so much for giving me any guidance to reach the answer of this >>> issue. I higly appreciate any help. >>> >>> Regards, >>> >>> Danilo >>> >>> -- >>> Danilo E. Rodríguez Zapata >>> Analista en Psicometría >>> CEBIAC >>> >>> [[alternative HTML version deleted]] >>> >>> ______________________________________________ >>> R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see >>> https://stat.ethz.ch/mailman/listinfo/r-help >>> PLEASE do read the posting guide >>> http://www.R-project.org/posting-guide.html >>> and provide commented, minimal, self-contained, reproducible code. >>> >> > > -- > Danilo E. Rodríguez Zapata > Analista en Psicometría > CEBIAC > [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.