Hello,

Please click <reply all> to keep this threaded.

What I was trying to say is to do something along the lines of

Y <- lubridate::year(dati$DATAORA)
Y2013 <- Y[Y == 2013]
PY2013 <- ave(dati$PREC, Y2013, FUN = cumsum)

plot(dati$DATAORA, PY2013)


Hope this helps,

Rui Barradas

Às 08:57 de 28/01/2019, Diego Avesani escreveu:
Dear Rui,

thanks a lot but I am quite new with R

I have done this:
dati$DATAORA<-as.POSIXct(strptime(dati$DATAORA,format="%Y-%m-%d %H:%M"))

Could you please specify what I have to do with lubridate?
Really Really thanks,

Diego



On Mon, 28 Jan 2019 at 09:33, Rui Barradas <ruipbarra...@sapo.pt <mailto:ruipbarra...@sapo.pt>> wrote:

    Hello,

    With on«bjects of class "Date" or "POSIXt", POSIXct" you can do

    lubridate::year(date_obj)

    to extract the year. Then aggregate by it.

    Hope this helps,

    Rui Barradas

    Às 08:25 de 28/01/2019, Diego Avesani escreveu:
     > Dear Jeff, Dear Rui, Dear all,
     >
     > Forget about the monthly things. I was trying to do two things at
    the
     > same time.
     > I try to explain myself. Thanks for your time and I really
    appreciate
     > your help.
     >
     > I have  a long file with hourly precipitation from 2000 to 2018.
    I would
     > like to select only on e year or even half of a year and plot the
     > cumulative precipitation of it in order to compare it with the
     > simulation data that I have.
     >
     > So far I was able only to read all the file:
     > dati <- read.csv(file="116.txt", header=FALSE, sep="," ,
     > na.strings="-999",skip = 6)
     >
     > and to plot the entire cumulative:
     > P <- cumsum(dati$PREC)
     > plot(dati$DATAORA, P)
     >
     > How can I choose only, for example, 2013 in order to have P?
     > thanks again
     >
     >
     > Diego
     >
     >
     >
     > On Mon, 28 Jan 2019 at 02:36, Jeff Newmiller
    <jdnew...@dcn.davis.ca.us <mailto:jdnew...@dcn.davis.ca.us>
     > <mailto:jdnew...@dcn.davis.ca.us
    <mailto:jdnew...@dcn.davis.ca.us>>> wrote:
     >
     >     I have no idea what you mean when you say "select starting
    date and
     >     ending
     >     date properly form [sic] datai$DATA". For one thing there is
    no column
     >     called DATA, and for another I don't know what starting dates and
     >     ending
     >     dates you might be interested in. If you need help to subset
    by time,
     >     perhaps you should ask a question about that instead.
     >
     >     Here is a reproducible example of making monthly data and
     >     manipulating it
     >     using artificial data:
     >
     >     ###############
     >     library(zoo)
     >     Sys.setenv( TZ = "GMT" )
     >     set.seed(42)
     >     dati <- data.frame( DATAORA = as.POSIXct( "2012-01-01" )
     >                                   + as.difftime( seq( 0, 365*3*24
     >                                                ), units="hours" )
     >                         )
     >     # terrible simulation of precipitation
     >     dati$PREC <- 0.1 * trunc( 50 * rbeta( nrow( dati ), 1, 80 ) )
     >     dati$ym <- as.yearmon( dati$DATAORA )
     >     # aggregate usually reduces the number of rows given to it
     >     datim <- aggregate( list( PREC = dati$PREC ) # data to summarize
     >                         , dati[ , "ym", drop=FALSE ] # columns to
    group on
     >                         , FUN = sum  # calculation on data
     >                         )
     >     plot(PREC ~ ym, data=datim) # This is how I would usually
    look at it
     >     as.year <- function(x) floor( as.numeric( x ) ) # from help
    file on
     >     as.yearmon
     >     datim$y <- as.year( datim$ym )
     >     # ave typically does not change the number of rows given to it
     >     datim$PMES <- ave( datim$PREC, datim$y, FUN = cumsum)
     >     plot(PMES ~ ym, data=datim) # My guess as to what you asked for?
     >     ###############
     >
     >     On Sun, 27 Jan 2019, Diego Avesani wrote:
     >
     >      > Dear  Jeff, Dear Rui, Dear all,
     >      >
     >      > I will try Rui's solution as soon as possible.
     >      > If I could ask:
     >      > As a first step, I would like to follow Jeff's suggestion.
    I will
     >     represent the precipitation data with a cumulative
     >      > distribution, one for each year.
     >      > This follow that I would like to select the starting date
    and the
     >     ending date properly form dati$DATA in order to
     >      > perform the cumulative function.
     >      >
     >      > Could you help me on that.
     >      >
     >      > Again, really really thanks
     >      >
     >      > Diego
     >      >
     >      >
     >      >
     >      > On Sun, 27 Jan 2019 at 21:37, Jeff Newmiller
     >     <jdnew...@dcn.davis.ca.us <mailto:jdnew...@dcn.davis.ca.us>
    <mailto:jdnew...@dcn.davis.ca.us <mailto:jdnew...@dcn.davis.ca.us>>>
    wrote:
     >      >       Very succinct, Rui!
     >      >
     >      >       One warning to Diego.... automatic data recorders
    tend to
     >     use the local standard timezone year-round. R by
     >      >       default assumes that timestamps converted from
    character to
     >     POSIXct using the current timezone on your
     >      >       computer... which may not be in the same zone that the
     >     logger was in but even more commonly the computer
     >      >       follows daylight savings time. This leads to NAs
    showing up
     >     in your converted timestamps in spring and
     >      >       duplicated values in autumn as the data are
    misinterpreted.
     >     The easiest solution can be to use
     >      >
     >      >       Sys.setenv( TZ="GMT" )
     >      >
     >      >       though if you need the actual timezone you can use a
    zone
     >     name of the form "Etc/GMT+5" (5 hrs west of GMT).
     >      >
     >      >       Note that Rui's solution will only work correctly
    near the
     >     month transition if you pretend the data timezone
     >      >       is GMT or UTC. (Technically these are different so your
     >     mileage may vary but most implementations treat them
     >      >       as identical and I have not encountered any cases where
     >     they differ.)
     >      >
     >      >       On January 27, 2019 10:03:44 AM PST, Rui Barradas
     >     <ruipbarra...@sapo.pt <mailto:ruipbarra...@sapo.pt>
    <mailto:ruipbarra...@sapo.pt <mailto:ruipbarra...@sapo.pt>>> wrote:
     >      >       >Hello,
     >      >       >
     >      >       >See if the following can get you started.
     >      >       >It uses package CRAN zoo, function as.yearmon.
     >      >       >
     >      >       >dati$MES <- zoo::as.yearmon(dati$DATAORA)
     >      >       >PMES <- ave(dati$PREC, dati$MES, FUN = cumsum)
     >      >       >
     >      >       >plot(dati$DATAORA, PMES)
     >      >       >
     >      >       >
     >      >       >Hope this helps,
     >      >       >
     >      >       >Rui Barradas
     >      >       >
     >      >       >?s 15:25 de 27/01/2019, Diego Avesani escreveu:
     >      >       >> Dear all,
     >      >       >>
     >      >       >> I have a set of data with has hourly value:
     >      >       >>
     >      >       >> # ID
     >      >       >> # Lo
     >      >       >> # L
     >      >       >> # Q
     >      >       >> Time,    T, RH,PSFC,DIR,VEL10, PREC, RAD, CC,FOG
     >      >       >> yyyy-mm-dd hh:mm,   ?C,  %, hPa, ?N,  m/s,
    mm/h,W/m?,  %,-
>      >       >> 2012-01-01 06:00, -0.1,100, 815,313,  2.6,  0.0,  0,  0,0 >      >       >> 2012-01-01 07:00, -1.2, 93, 814,314,  4.8,  0.0,  0,  0,0 >      >       >> 2012-01-01 08:00,  1.7, 68, 815,308,  7.5,  0.0, 41, 11,0
     >      >       >> 2012-01-01 09:00,  2.4, 65, 815,308,  7.4,  0.0,
    150, 33,0
     >      >       >> .....
     >      >       >> .....
     >      >       >>
     >      >       >> I was able to read it,  create my-own data frame
    and to
     >     plot the
     >      >       >total
     >      >       >> cumulative function.
     >      >       >> This is basically what I have done:
     >      >       >>
     >      >       >> dati <- read.csv(file="116.txt", header=FALSE,
    sep="," ,
     >      >       >> na.strings="-999",skip = 6)
     >      >       >> colnames(dati)=c("DATAORA","T",
     >     "RH","PSFC","DIR","VEL10", "PREC",
     >      >       >"RAD",
     >      >       >> "CC","FOG")
     >      >       >>
     >      >       >>
     >     dati$DATAORA<-as.POSIXct(strptime(dati$DATAORA,format="%Y-%m-%d
     >      >       >%H:%M"))
     >      >       >>
     >      >       >>
     >      >       >> P <- cumsum(dati$PREC)
     >      >       >> plot(dati$DATAORA, P)
     >      >       >>
     >      >       >> I would like to select the data according to an
    starting
     >     and ending
     >      >       >date.
     >      >       >> In addition, I would like to plot the monthly and not
     >     the total one.
     >      >       >> I mean, I would like to have a cumulative plot
    for each
     >     month of the
     >      >       >> selected year.
     >      >       >>
     >      >       >> I am struggling with "ddply" but probably it is the
     >     wrong way.
     >      >       >>
     >      >       >> Could someone help me?  Really Really thanks,
     >      >       >>
     >      >       >>
     >      >       >> Diego
     >      >       >>
     >      >       >>      [[alternative HTML version deleted]]
     >      >       >>
     >      >       >> ______________________________________________
     >      >       >> R-help@r-project.org
    <mailto:R-help@r-project.org> <mailto:R-help@r-project.org
    <mailto:R-help@r-project.org>>
     >     mailing list -- To UNSUBSCRIBE and more, see
     >      >       >> https://stat.ethz.ch/mailman/listinfo/r-help
     >      >       >> PLEASE do read the posting guide
     >      >       >http://www.R-project.org/posting-guide.html
     >      >       >> and provide commented, minimal, self-contained,
     >     reproducible code.
     >      >       >>
     >      >       >
     >      >       >______________________________________________
     >      >       >R-help@r-project.org <mailto:R-help@r-project.org>
    <mailto:R-help@r-project.org <mailto:R-help@r-project.org>> mailing
     >     list -- To UNSUBSCRIBE and more, see
     >      >       >https://stat.ethz.ch/mailman/listinfo/r-help
     >      >       >PLEASE do read the posting guide
     >      >       >http://www.R-project.org/posting-guide.html
     >      >       >and provide commented, minimal, self-contained,
     >     reproducible code.
     >      >
     >      >       --
     >      >       Sent from my phone. Please excuse my brevity.
     >      >
     >      >
     >      >
     >
>  --------------------------------------------------------------------------- >     Jeff Newmiller                        The     .....  .....  Go
     >     Live...
     >     DCN:<jdnew...@dcn.davis.ca.us
    <mailto:jdnew...@dcn.davis.ca.us> <mailto:jdnew...@dcn.davis.ca.us
    <mailto:jdnew...@dcn.davis.ca.us>>>
     >          Basics: ##.#.       ##.#.  Live Go...
     >                                             Live:   OO#.. Dead:
    OO#..
     >     Playing
>     Research Engineer (Solar/Batteries            O.O#.  #.O#.  with
     >     /Software/Embedded Controllers)               .OO#.       .OO#.
     >     rocks...1k
>  ---------------------------------------------------------------------------
     >


______________________________________________
R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to