Dear R Community, My data have 3 conditions and each condition has 6 replicates. I am trying to fit my data for a linear mixed model using the lmer function from lme4 package to find the random effects of the replicates; however, I got the error message. Here are the example codes: >example.3=data.frame(levels=as.numeric(XXX[,c(4)]),replicate=rep(c("0","1","2","3","4","5"),3),conditions=c(rep("11",6),rep("12",6),rep("13",6)))> > example.3 levels replicate conditions1 43.1111 0 112 >42.0942 1 113 57.8131 2 114 57.1726 >3 115 77.8678 4 116 44.7578 5 117 >69.5078 0 128 52.0581 1 129 40.0602 >2 1210 45.5487 3 1211 43.6201 4 1212 >60.4939 5 1213 64.1932 0 1314 53.4055 >1 1315 59.6701 2 1316 52.6922 3 1317 >53.8712 4 1318 60.2770 5 13> >m.example.3=lmer(as.numeric(levels)~conditions+(conditions|replicate),data=example.3)Error: > number of observations (=18) <= number of random effects (=18) for term >(conditions | replicate); the random-effects parameters and the residual >variance (or scale parameter) are probably unidentifiable> Could anyone help me figure out how to fix the issue? Thank you very much for any inputs! Ace
[[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.