Dear R Community,
My data have 3 conditions and each condition has 6 replicates. I am trying to 
fit my data for a linear mixed model using the lmer function from lme4 package 
to find the random effects of the replicates; however, I got the error message. 
Here are the example codes:
>example.3=data.frame(levels=as.numeric(XXX[,c(4)]),replicate=rep(c("0","1","2","3","4","5"),3),conditions=c(rep("11",6),rep("12",6),rep("13",6)))>
> example.3    levels replicate conditions1  43.1111         0         112  
>42.0942         1         113  57.8131         2         114  57.1726         
>3         115  77.8678         4         116  44.7578         5         117  
>69.5078         0         128  52.0581         1         129  40.0602         
>2         1210 45.5487         3         1211 43.6201         4         1212 
>60.4939         5         1213 64.1932         0         1314 53.4055         
>1         1315 59.6701         2         1316 52.6922         3         1317 
>53.8712         4         1318 60.2770         5         13> 
>m.example.3=lmer(as.numeric(levels)~conditions+(conditions|replicate),data=example.3)Error:
> number of observations (=18) <= number of random effects (=18) for term 
>(conditions | replicate); the random-effects parameters and the residual 
>variance (or scale parameter) are probably unidentifiable> 
Could anyone help me figure out how to fix the issue? 
Thank you very much for any inputs!
Ace

        [[alternative HTML version deleted]]

______________________________________________
R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to