Dear Arne, Sorry for posting my mail twice and thanks a lot for your help.
Best regards, Maram Sent from my iPhone > On Jul 7, 2015, at 9:55 PM, Arne Henningsen <arne.henning...@gmail.com> wrote: > > Dear Maram > > Please do NOT post your message twice! > > The warning messages occur each time, when maxLik() tries to calculate > the logLik value for theta[1] <= 0, theta[1] + theta[2] <= 0, theta[3] > <= 0 or something similar. According to the log-likelihood function, > it seems that the parameters theta[1], theta[2], and theta[3] must be > strictly positive. I suggest to re-parameterise your model so that the > estimated parameters can take any values between minus infinity and > infinity, e.g. by theta[1] <- exp( param[1] ); theta[2] <- exp( > param[2] ); theta[3] <- exp( param[3] ) so that your estimated > parameter vector 'param' consists of log( theta[1] ), log( theta[2] ), > and log( theta[3] ). After the estimation, you can obtain the > estimated values of the thetas by exp( param[1] ), exp( param[2] ), > and exp( param[3] ) . > > Best regards, > Arne > > > > 2015-07-06 2:29 GMT+02:00 Maram Salem <marammagdysa...@gmx.com>: >> Dear All >> I'm trying to find the maximum likelihood estimator of a certain >> distribution based on the newton raphson method using maxLik package. I >> wrote the log-likelihood , gradient, and hessian functionsusing the >> following code. >> >> #Step 1: Creating the theta vector >> theta <-vector(mode = "numeric", length = 3) >> # Step 2: Setting the values of r and n >> r<- 17 >> n <-30 >> # Step 3: Creating the T vector >> T<-c(7.048,0.743,2.404,1.374,2.233,1.52,23.531,5.182,4.502,1.362,1.15,1.86,1.692,11.659,1.631,2.212,5.451) >> # Step 4: Creating the C vector >> C<- >> c(0.562,5.69,12.603,3.999,6.156,4.004,5.248,4.878,7.122,17.069,23.996,1.538,7.792) >> # The loglik. func. >> loglik <- function(param) { >> theta[1]<- param[1] >> theta[2]<- param[2] >> theta[3]<- param[3] >> l<-(r*log(theta[3]))+(r*log(theta[1]+theta[2]))+(n*theta[3]*log(theta[1]))+(n*theta[3]*log(theta[2]))+ >> (-1*(theta[3]+1))*sum(log((T*(theta[1]+theta[2]))+(theta[1]*theta[2])))+ >> (-1*theta[3]*sum(log((C*(theta[1]+theta[2]))+(theta[1]*theta[2])))) >> return(l) >> } >> # Step 5: Creating the gradient vector and calculating its inputs >> U <- vector(mode="numeric",length=3) >> gradlik<-function(param = theta,n, T,C) >> { >> U <- vector(mode="numeric",length=3) >> theta[1] <- param[1] >> theta[2] <- param[2] >> theta[3] <- param[3] >> r<- 17 >> n <-30 >> T<-c(7.048,0.743,2.404,1.374,2.233,1.52,23.531,5.182,4.502,1.362,1.15,1.86,1.692,11.659,1.631,2.212,5.451) >> C<- >> c(0.562,5.69,12.603,3.999,6.156,4.004,5.248,4.878,7.122,17.069,23.996,1.538,7.792) >> U[1]<- (r/(theta[1]+theta[2]))+((n*theta[3])/theta[1])+( >> -1*(theta[3]+1))*sum((T+theta[2])/((theta[1]+theta[2])*T+(theta[1]*theta[2])))+ >> >> (-1*(theta[3]))*sum((C+theta[2])/((theta[1]+theta[2])*C+(theta[1]*theta[2]))) >> U[2]<-(r/(theta[1]+theta[2]))+((n*theta[3])/theta[2])+ >> (-1*(theta[3]+1))*sum((T+theta[1])/((theta[1]+theta[2])*T+(theta[1]*theta[2])))+ >> >> (-1*(theta[3]))*sum((C+theta[1])/((theta[1]+theta[2])*C+(theta[1]*theta[2]))) >> U[3]<-(r/theta[3])+(n*log(theta[1]*theta[2]))+ >> (-1)*sum(log((T*(theta[1]+theta[2]))+(theta[1]*theta[2])))+(-1)*sum(log((C*(theta[1]+theta[2]))+(theta[1]*theta[2]))) >> return(U) >> } >> # Step 6: Creating the G (Hessian) matrix and Calculating its inputs >> hesslik<-function(param=theta,n,T,C) >> { >> theta[1] <- param[1] >> theta[2] <- param[2] >> theta[3] <- param[3] >> r<- 17 >> n <-30 >> T<-c(7.048,0.743,2.404,1.374,2.233,1.52,23.531,5.182,4.502,1.362,1.15,1.86,1.692,11.659,1.631,2.212,5.451) >> C<- >> c(0.562,5.69,12.603,3.999,6.156,4.004,5.248,4.878,7.122,17.069,23.996,1.538,7.792) >> G<- matrix(nrow=3,ncol=3) >> G[1,1]<-((-1*r)/((theta[1]+theta[2])^2))+((-1*n*theta[3])/(theta[1])^2)+ >> (theta[3]+1)*sum(((T+theta[2])/((theta[1]+theta[2])*T+(theta[1]*theta[2])))^2)+( >> theta[3])*sum(((C+theta[2])/((theta[1]+theta[2])*C+(theta[1]*theta[2])))^2) >> G[1,2]<-((-1*r)/((theta[1]+theta[2])^2))+ >> (theta[3]+1)*sum(((T)/((theta[1]+theta[2])*T+(theta[1]*theta[2])))^2)+ >> (theta[3])*sum(((C)/((theta[1]+theta[2])*C+(theta[1]*theta[2])))^2) >> G[2,1]<-G[1,2] >> G[1,3]<-(n/theta[1])+(-1)*sum( >> (T+theta[2])/((theta[1]+theta[2])*T+(theta[1]*theta[2])))+(-1)*sum((C+theta[2])/((theta[1]+theta[2])*C+(theta[1]*theta[2]))) >> G[3,1]<-G[1,3] >> G[2,2]<-((-1*r)/((theta[1]+theta[2])^2))+((-1*n*theta[3])/(theta[2])^2)+ >> (theta[3]+1)*sum(((T+theta[1])/((theta[1]+theta[2])*T+(theta[1]*theta[2])))^2)+( >> theta[3])*sum(((C+theta[1])/((theta[1]+theta[2])*C+(theta[1]*theta[2])))^2) >> G[2,3]<-(n/theta[2])+(-1)*sum((T+theta[1])/((theta[1]+theta[2])*T+(theta[1]*theta[2])))+(-1)*sum((C+theta[1])/((theta[1]+theta[2])*C+(theta[1]*theta[2]))) >> G[3,2]<-G[2,3] >> G[3,3]<-((-1*r)/(theta[3])^2) >> return(G) >> } >> mle<-maxLik(loglik, grad = gradlik, hess = hesslik, start=c(40,50,2)) >> There were 50 or more warnings (use warnings() to see the first 50) >> >> warnings () >> Warning messages: >> 1: In log(theta[3]) : NaNs produced >> 2: In log(theta[1] + theta[2]) : NaNs produced >> 3: In log(theta[1]) : NaNs produced >> 4: In log((T * (theta[1] + theta[2])) + (theta[1] * theta[2])) : NaNs >> produced >> and so on ....... >> >> Although when I evaluate, for example, log(theta[3]) it gives me a number. >> and the same applies for the other warnings. >> >> Then when I used summary (mle), I got >> >> >> Maximum Likelihood estimation >> Newton-Raphson maximisation, 7 iterations >> Return code 1: gradient close to zero >> Log-Likelihood: -55.89012 >> 3 free parameters >> Estimates: >> Estimate Std. error t value Pr(> t) >> [1,] 11.132 Inf 0 1 >> [2,] 47.618 Inf 0 1 >> [3,] 1.293 Inf 0 1 >> -------------------------------------------- >> >> >> Where the estimates are far away from the starting values and they have >> infinite standard errors. I think there is a problem with my gradlik or >> hesslik functions, but I can't figure it out. >> Any help? >> Thank you in advance. >> >> Maram >> >> >> >> [[alternative HTML version deleted]] >> >> ______________________________________________ >> R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see >> https://stat.ethz.ch/mailman/listinfo/r-help >> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html >> and provide commented, minimal, self-contained, reproducible code. > > > > -- > Arne Henningsen > http://www.arne-henningsen.name ______________________________________________ R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.