Dear Maram Please do NOT post your message twice!
The warning messages occur each time, when maxLik() tries to calculate the logLik value for theta[1] <= 0, theta[1] + theta[2] <= 0, theta[3] <= 0 or something similar. According to the log-likelihood function, it seems that the parameters theta[1], theta[2], and theta[3] must be strictly positive. I suggest to re-parameterise your model so that the estimated parameters can take any values between minus infinity and infinity, e.g. by theta[1] <- exp( param[1] ); theta[2] <- exp( param[2] ); theta[3] <- exp( param[3] ) so that your estimated parameter vector 'param' consists of log( theta[1] ), log( theta[2] ), and log( theta[3] ). After the estimation, you can obtain the estimated values of the thetas by exp( param[1] ), exp( param[2] ), and exp( param[3] ) . Best regards, Arne 2015-07-06 2:29 GMT+02:00 Maram Salem <marammagdysa...@gmx.com>: > Dear All > I'm trying to find the maximum likelihood estimator of a certain > distribution based on the newton raphson method using maxLik package. I wrote > the log-likelihood , gradient, and hessian functionsusing the following code. > > #Step 1: Creating the theta vector > theta <-vector(mode = "numeric", length = 3) > # Step 2: Setting the values of r and n > r<- 17 > n <-30 > # Step 3: Creating the T vector > T<-c(7.048,0.743,2.404,1.374,2.233,1.52,23.531,5.182,4.502,1.362,1.15,1.86,1.692,11.659,1.631,2.212,5.451) > # Step 4: Creating the C vector > C<- > c(0.562,5.69,12.603,3.999,6.156,4.004,5.248,4.878,7.122,17.069,23.996,1.538,7.792) > # The loglik. func. > loglik <- function(param) { > theta[1]<- param[1] > theta[2]<- param[2] > theta[3]<- param[3] > > l<-(r*log(theta[3]))+(r*log(theta[1]+theta[2]))+(n*theta[3]*log(theta[1]))+(n*theta[3]*log(theta[2]))+ > (-1*(theta[3]+1))*sum(log((T*(theta[1]+theta[2]))+(theta[1]*theta[2])))+ > (-1*theta[3]*sum(log((C*(theta[1]+theta[2]))+(theta[1]*theta[2])))) > return(l) > } > # Step 5: Creating the gradient vector and calculating its inputs > U <- vector(mode="numeric",length=3) > gradlik<-function(param = theta,n, T,C) > { > U <- vector(mode="numeric",length=3) > theta[1] <- param[1] > theta[2] <- param[2] > theta[3] <- param[3] > r<- 17 > n <-30 > T<-c(7.048,0.743,2.404,1.374,2.233,1.52,23.531,5.182,4.502,1.362,1.15,1.86,1.692,11.659,1.631,2.212,5.451) > C<- > c(0.562,5.69,12.603,3.999,6.156,4.004,5.248,4.878,7.122,17.069,23.996,1.538,7.792) > U[1]<- (r/(theta[1]+theta[2]))+((n*theta[3])/theta[1])+( > -1*(theta[3]+1))*sum((T+theta[2])/((theta[1]+theta[2])*T+(theta[1]*theta[2])))+ > (-1*(theta[3]))*sum((C+theta[2])/((theta[1]+theta[2])*C+(theta[1]*theta[2]))) > U[2]<-(r/(theta[1]+theta[2]))+((n*theta[3])/theta[2])+ > (-1*(theta[3]+1))*sum((T+theta[1])/((theta[1]+theta[2])*T+(theta[1]*theta[2])))+ > (-1*(theta[3]))*sum((C+theta[1])/((theta[1]+theta[2])*C+(theta[1]*theta[2]))) > U[3]<-(r/theta[3])+(n*log(theta[1]*theta[2]))+ > (-1)*sum(log((T*(theta[1]+theta[2]))+(theta[1]*theta[2])))+(-1)*sum(log((C*(theta[1]+theta[2]))+(theta[1]*theta[2]))) > return(U) > } > # Step 6: Creating the G (Hessian) matrix and Calculating its inputs > hesslik<-function(param=theta,n,T,C) > { > theta[1] <- param[1] > theta[2] <- param[2] > theta[3] <- param[3] > r<- 17 > n <-30 > T<-c(7.048,0.743,2.404,1.374,2.233,1.52,23.531,5.182,4.502,1.362,1.15,1.86,1.692,11.659,1.631,2.212,5.451) > C<- > c(0.562,5.69,12.603,3.999,6.156,4.004,5.248,4.878,7.122,17.069,23.996,1.538,7.792) > G<- matrix(nrow=3,ncol=3) > G[1,1]<-((-1*r)/((theta[1]+theta[2])^2))+((-1*n*theta[3])/(theta[1])^2)+ > (theta[3]+1)*sum(((T+theta[2])/((theta[1]+theta[2])*T+(theta[1]*theta[2])))^2)+( > theta[3])*sum(((C+theta[2])/((theta[1]+theta[2])*C+(theta[1]*theta[2])))^2) > G[1,2]<-((-1*r)/((theta[1]+theta[2])^2))+ > (theta[3]+1)*sum(((T)/((theta[1]+theta[2])*T+(theta[1]*theta[2])))^2)+ > (theta[3])*sum(((C)/((theta[1]+theta[2])*C+(theta[1]*theta[2])))^2) > G[2,1]<-G[1,2] > G[1,3]<-(n/theta[1])+(-1)*sum( > (T+theta[2])/((theta[1]+theta[2])*T+(theta[1]*theta[2])))+(-1)*sum((C+theta[2])/((theta[1]+theta[2])*C+(theta[1]*theta[2]))) > G[3,1]<-G[1,3] > G[2,2]<-((-1*r)/((theta[1]+theta[2])^2))+((-1*n*theta[3])/(theta[2])^2)+ > (theta[3]+1)*sum(((T+theta[1])/((theta[1]+theta[2])*T+(theta[1]*theta[2])))^2)+( > theta[3])*sum(((C+theta[1])/((theta[1]+theta[2])*C+(theta[1]*theta[2])))^2) > G[2,3]<-(n/theta[2])+(-1)*sum((T+theta[1])/((theta[1]+theta[2])*T+(theta[1]*theta[2])))+(-1)*sum((C+theta[1])/((theta[1]+theta[2])*C+(theta[1]*theta[2]))) > G[3,2]<-G[2,3] > G[3,3]<-((-1*r)/(theta[3])^2) > return(G) > } > mle<-maxLik(loglik, grad = gradlik, hess = hesslik, start=c(40,50,2)) > There were 50 or more warnings (use warnings() to see the first 50) > > warnings () > Warning messages: > 1: In log(theta[3]) : NaNs produced > 2: In log(theta[1] + theta[2]) : NaNs produced > 3: In log(theta[1]) : NaNs produced > 4: In log((T * (theta[1] + theta[2])) + (theta[1] * theta[2])) : NaNs produced > and so on ....... > > Although when I evaluate, for example, log(theta[3]) it gives me a number. > and the same applies for the other warnings. > > Then when I used summary (mle), I got > > > Maximum Likelihood estimation > Newton-Raphson maximisation, 7 iterations > Return code 1: gradient close to zero > Log-Likelihood: -55.89012 > 3 free parameters > Estimates: > Estimate Std. error t value Pr(> t) > [1,] 11.132 Inf 0 1 > [2,] 47.618 Inf 0 1 > [3,] 1.293 Inf 0 1 > -------------------------------------------- > > > Where the estimates are far away from the starting values and they have > infinite standard errors. I think there is a problem with my gradlik or > hesslik functions, but I can't figure it out. > Any help? > Thank you in advance. > > Maram > > > > [[alternative HTML version deleted]] > > ______________________________________________ > R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. -- Arne Henningsen http://www.arne-henningsen.name ______________________________________________ R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.