Scherber, Christoph <cscherb1 <at> gwdg.de> writes: > > Dear all, > > I am trying to express a multinomial GLM (using nnet) as a series of GLM models. > > However, when I compare the multinom() predictions to those from GLM, I see differences that I can´t > explain. Can anyone help me out here? > > Here comes a reproducible example: > > ## > # set up data: (don´t care what they are, just for playing) > set.seed(0) > cats=c("oligolectic","polylectic","specialist","generalist") > explan1=c("natural","managed") > explan2=c("meadow","meadow","pasture","pasture") > multicats=factor(sample(cats,replace=T,100,prob=c(0.5,0.2,0.1,0.5))) > multiplan1=factor(rep(explan1,50)) > multiplan2=factor(rep(explan2,25)) > > ######################## > library(nnet) > m2=multinom(multicats~multiplan1) > > # predictions from multinomial model > predict(m2,type="probs") > > ######################## > # now set up contrasts for response variable "multicats" (which has 4 levels):
[snip - Christoph's comparison] Doing the obvious comparison: ggen.preds <- sapply( levels(multicats), function(x) predict(glm(I(multicats==x)~multiplan1, family=binomial),type="response")) max(abs(ggen.preds-predict(m2,type="probs"))) ## [1] 1.349607e-06 --- The predictions are the same - up to numerical issues in the algorithms. HTH, Chuck ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.