I don't believe that R-help permits pdf files. A useful workaround is to post it to a file hosting site like MediaFire and post the link here. John Kane Kingston ON Canada
> -----Original Message----- > From: jimmycl...@gmail.com > Sent: Wed, 4 Jul 2012 22:56:02 -0400 > To: pauljoh...@gmail.com > Subject: Re: [R] EM algorithm to find MLE of coeff in mixed effects model > > Dear Paul, > > Thank you for your suggestion. I was moved by the fact that people are so > nice to help learners and ask for nothing. > With your help, I made some changes to my code and add more comments, try > to make things more clear. > If this R email list allow me to upload a pdf file to illustrate the > formula, it will be great. > The reason I do not use lme4 is that later I plan to use this for a more > complicated model (Y,T), Y is the same response of mixed model and T is a > drop out process. > (Frankly I did it for the more complicated model first and got NaN > hessian > after one iteration, so I turned to the simple model.) > In the code, the m loop is the EM iterations. About efficiency, thank you > again for pointing it out. I compared sapply and for loop, they are tie > and > for loop is even better sometimes. > In a paper by Bates, he mentioned that the asymptotic properties of beta > is > kind of independent of the other two parameters. But it seems that paper > was submitted but I did not find it on google scholar. > Not sure if it is the reason for my results. That is why I hope some > expert > who have done some simulation similar may be willing to give some > suggestion. > I may turn to other methods to calculate the conditional expection of the > latent variable as the same time. > > Modified code is as below: > > # library(PerformanceAnalytics) > # install.packages("gregmisc") > # install.packages("statmod") > library(gregmisc) > library(MASS) > library(statmod) > > ## function to calculate loglikelihood > loglike <- function(datai = data.list[[i]], vvar = var.old, > beta = beta.old, psi = psi.old) { > temp1 <- -0.5 * log(det(vvar * diag(nrow(datai$Zi)) + datai$Zi %*% > psi %*% t(datai$Zi))) > temp2 <- -0.5 * t(datai$yi - datai$Xi %*% beta) %*% solve(vvar * > diag(nrow(datai$Zi)) + datai$Zi %*% psi %*% t(datai$Zi)) %*% > (datai$yi - datai$Xi %*% beta) > temp1 + temp2 > } > > ## functions to evaluate the conditional expection, saved as Efun v2.R > ## Eh1new=E(bibi') > ## Eh2new=E(X'(y-Zbi)) > ## Eh3new=E(bi'Z'Zbi) > ## Eh4new=E(Y-Xibeta-Zibi)'(Y-Xibeta-Zibi) > ## Eh5new=E(Xibeta-yi)'Zibi > ## Eh6new=E(bi) > > Eh1new <- function(datai = data.list[[i]], weights.m = weights.mat) { > bi <- datai$b > tempb <- bi * rep(sqrt(weights.m[, 1] * weights.m[, 2]), > 2) #quadratic b, so need sqrt > t(tempb) %*% tempb/pi > } # end of Eh1 > > > # Eh2new=E(X'(y-Zbi)) > Eh2new <- function(datai = data.list[[i]], weights.m = weights.mat) { > bi <- datai$b > tempb <- bi * rep(weights.m[, 1] * weights.m[, 2], 2) > tt <- t(datai$Xi) %*% datai$yi - t(datai$Xi) %*% datai$Zi %*% > colSums(tempb)/pi > c(tt) > } # end of Eh2 > > > # Eh3new=E(b'Z'Zbi) > Eh3new <- function(datai = data.list[[i]], weights.m = weights.mat) { > bi <- datai$b > tempb <- bi * rep(sqrt(weights.m[, 1] * weights.m[, 2]), > 2) #quadratic b, so need sqrt > sum(sapply(as.list(data.frame(datai$Zi %*% t(tempb))), > function(s) { > sum(s^2) > }))/pi > } # end of Eh3 > > # Eh4new=E(Y-Xibeta-Zibi)'(Y-Xibeta-Zibi) > Eh4new <- function(datai = data.list[[i]], weights.m = weights.mat, > beta = beta.old) { > bi <- datai$b > tt <- sapply(as.list(ata.frame(c(datai$yi - datai$Xi %*% > beta) - datai$Zi %*% t(bi))), function(s) { > sum(s^2) > }) * (weights.m[, 1] * weights.m[, 2]) > sum(tt)/pi > } # end of Eh4 > > Eh4newv2 <- function(datai = data.list[[i]], weights.m = weights.mat, > beta = beta.old) { > bi <- datai$b > v <- weights.m[, 1] * weights.m[, 2] > temp <- c() > for (i in 1:length(v)) { > temp[i] <- sum(((datai$yi - datai$Xi %*% beta - datai$Zi %*% > bi[i, ]) * sqrt(v[i]))^2) > } > sum(temp)/pi > } # end of Eh4 > > # Eh5new=E(Xibeta-yi)'Zib > Eh5new <- function(datai = data.list[[i]], weights.m = weights.mat, > beta = beta.old) { > bi <- datai$b > tempb <- bi * rep(weights.m[, 1] * weights.m[, 2], 2) > t(datai$Xi %*% beta - datai$yi) %*% (datai$Zi %*% t(tempb)) > sum(t(datai$Xi %*% beta - datai$yi) %*% (datai$Zi %*% > t(tempb)))/pi > } > > Eh6new <- function(datai = data.list[[i]], weights.m = weights.mat) { > bi <- datai$b > tempw <- weights.m[, 1] * weights.m[, 2] > for (i in 1:nrow(bi)) { > bi[i, ] <- bi[i, ] * tempw[i] > } > colMeans(bi)/pi > } # end of Eh6 > > ## the main R script > ################### initial the values and generate the data > ################## > n <- 100 #number of > observations > beta <- c(-0.5, 1) #true coefficient of > fixed > effects > vvar <- 2 #sigma^2=2 #true error > variance > of epsilon > psi <- matrix(c(1, 0.2, 0.2, 1), 2, 2) #covariance matrix > of random effects b > b.m.true <- mvrnorm(n = n, mu = c(0, 0), Sigma = psi) #100*2 matrix, > each > row is the b_i > Xi <- cbind(rnorm(7, mean = 2, sd = 0.5), log(2:8)) > Zi <- Xi > y.m <- matrix(NA, nrow = n, ncol = nrow(Xi)) #100*7, each row > is > a y_i Zi=Xi > > for( i in 1:n) > { > y.m[i,]=mvrnorm(1,mu=(Xi%*%beta+Zi%*%b.m.true[i,]),vvar*diag(nrow(Xi))) > } > b.list <- as.list(data.frame(t(b.m.true))) > psi.old <- matrix(c(0.5, 0.4, 0.4, 0.5), 2, 2) #starting psi, > beta > and var,not the true values > beta.old <- c(-0.3, 0.7) > var.old <- 1.7 > > gausspar <- gauss.quad(10, kind = "hermite", alpha = 0, beta = 0) > > # data.list.wob contains X,Y and Z, but no b's > data.list.wob <- list() > for (i in 1:n) { > data.list.wob[[i]] <- list(Xi = Xi, yi = y.m[i, ], Zi = Zi) > } > > # compute true loglikelihood and initial loglikelihood > truelog <- 0 > for (i in 1:length(data.list.wob)) { > truelog <- truelog + loglike(data.list.wob[[i]], vvar, beta, psi) > } > truelog > > loglikeseq <- c() > loglikeseq[1] <- sum(sapply(data.list.wob, loglike)) > > ECM <- F > > ############################# E-M steps > ################################################ > # m loop is the EM iteration > for (m in 1:300) { > Sig.hat <- Zi %*% psi.old %*% t(Zi) + var.old * diag(nrow(Zi)) > #estimated covariance matrix of y > Sig.hat.inv <- solve(Sig.hat) > W.hat <- psi.old - psi.old %*% t(Zi) %*% Sig.hat.inv %*% > Zi %*% psi.old > Sigb <- psi.old - psi.old %*% t(Zi) %*% Sig.hat.inv %*% Zi %*% > psi.old > #estimated covariance matrix of b > > Y.minus.X.beta <- t(t(y.m) - c(Xi %*% beta.old)) > miu.m <- t(apply(Y.minus.X.beta, MARGIN = 1, function(s, > B = psi.old %*% t(Zi) %*% solve(Sig.hat)) { > B %*% s > })) ### each row is the miu_i > > tmp1 <- permutations(length(gausspar$nodes), 2, repeats.allowed = T) > tmp2 <- c(tmp1) > a.mat <- matrix(gausspar$nodes[tmp2], nrow = nrow(tmp1)) # a1,a1 > # a1,a2 > # ... > # a10,a9 > # a10,a10 > # a.mat are all ordered pairs of gauss hermite nodes > a.mat.list <- as.list(data.frame(t(a.mat))) > tmp1 <- permutations(length(gausspar$weights), 2, repeats.allowed = > T) > tmp2 <- c(tmp1) > weights.mat <- matrix(gausspar$weights[tmp2], nrow = nrow(tmp1)) # > w1,w1 > # w1,w2 > # ... > # w10,w9 > # w10,w10 > # weights.mat are all ordered pairs of gauss hermite weights > L <- chol(solve(W.hat)) > LL <- sqrt(2) * solve(L) > halfb <- t(LL %*% t(a.mat)) > # each page of b.array is all values of bi_k and bi_j for b_i > # need to calculate those b's as linear functions of nodes since the > original integral needs transformation to use gauss approximation > b.list <- list() > for (i in 1:n) { > b.list[[i]] <- t(t(halfb) + miu.m[i, ]) > } > > # generate a list, each page contains Xi,yi,Zi, and b's > data.list <- list() > for (i in 1:n) { > data.list[[i]] <- list(Xi = Xi, yi = y.m[i, ], Zi = Zi, > b = b.list[[i]]) > } > > # update sigma^2 > t1 <- proc.time() > tempaa <- c() > tempbb <- c() > for (j in 1:n) { > tempbb[j] <- Eh4newv2(datai = data.list[[j]], weights.m = > weights.mat, beta = beta.old) > } > var.new <- mean(tempbb) > if (ECM == T) { > var.old <- var.new > } > > sumXiXi <- matrix(rowSums(sapply(data.list, function(s) { > t(s$Xi) %*% (s$Xi) > })), ncol = ncol(Xi)) > tempbb=sapply(data.list,Eh2new) > beta.new <- solve(sumXiXi) %*% rowSums(tempbb) > > if (ECM == T) { > beta.old <- beta.new > } > > # update psi > tempcc <- array(NA, c(2, 2, n)) > sumtempcc <- matrix(0, 2, 2) > for (j in 1:n) { > tempcc[, , j] <- Eh1new(data.list[[j]], weights.m = weights.mat) > sumtempcc <- sumtempcc + tempcc[, , j] > } > psi.new <- sumtempcc/n > > # stop condition > if (sum(abs(beta.old - beta.new)) + sum(abs(psi.old - psi.new)) + > sum(abs(var.old - var.new)) < 0.01) { > print("converge, stop") > break > } > > # update parameters > var.old <- var.new > psi.old <- psi.new > beta.old <- beta.new > loglikeseq[m + 1] <- sum(sapply(data.list, loglike)) > } # end of M loop > > > On Tue, Jul 3, 2012 at 5:06 PM, Paul Johnson <pauljoh...@gmail.com> > wrote: > >> On Tue, Jul 3, 2012 at 12:41 PM, jimmycloud <jimmycl...@gmail.com> >> wrote: >>> I have a general question about coefficients estimation of the mixed >> model. >>> >> >> I have 2 ideas for you. >> >> 1. Fit with lme4 package, using the lmer function. That's what it is >> for. >> >> 2. If you really want to write your own EM algorithm, I don't feel >> sure that very many R and EM experts are going to want to read through >> the code you have because you don't follow some of the minimal >> readability guidelines. I accept the fact that there is no officially >> mandated R style guide, except for "indent with 4 spaces, not tabs." >> But there are some almost universally accepted basics like >> >> 1. Use <-, not =, for assignment >> 2. put a space before and after symbols like <-, = , + , * , and so >> forth. >> 3. I'd suggest you get used to putting squiggly braces in the K&R style. >> >> I have found the formatR package's tool tidy.source can do this >> nicely. From tidy.source, here's what I get with your code >> >> http://pj.freefaculty.org/R/em2.R >> >> Much more readable! >> (I inserted library(MASS) for you at the top, otherwise this doesn't >> even survive the syntax check.) >> >> When I copy from email to Emacs, some line-breaking monkey-business >> occurs, but I expect you get the idea. >> >> Now, looking at your cleaned up code, I can see some things to tidy up >> to improve the chances that some expert will look. >> >> First, R functions don't require "return" at the end, many experts >> consider it distracting. (Run "lm" or such and review how they write. >> No return at the end of functions). >> >> Second, about that big for loop at the top, the one that goes from m >> 1:300 >> >> I don't know what that loop is doing, but there's some code in it that >> I'm suspicious of. For example, this part: >> >> W.hat <- psi.old - psi.old %*% t(Zi) %*% solve(Sig.hat) %*% Zi %*% >> psi.old >> >> Sigb <- psi.old - psi.old %*% t(Zi) %*% solve(Sig.hat) %*% Zi %*% >> psi.old >> >> >> First, you've caused the possibly slow calculation of solve >> (Sig.hat) to run two times. If you really need it, run it once and >> save the result. >> >> >> Second, a for loop is not necessarily slow, but it may be easier to >> read if you re-write this: >> >> for (j in 1:n) { >> tempaa[j]=Eh4new(datai=data.list[[j]],weights.m=weights.mat,beta=beta.old) >> tempbb[j] <- Eh4newv2(datai = data.list[[j]], weights.m = >> weights.mat, beta = beta.old) >> } >> >> like this: >> >> tempaa <- lapply(data.list, Eh4new, weights.m, beta.old) >> tempbb <- lapply(data.list, Eh4newv2, weights.m, beta.old) >> >> Third, here is a no-no >> >> tempbb <- c() >> for (j in 1:n) { >> tempbb <- cbind(tempbb, Eh2new(data.list[[j]], weights.m = >> weights.mat)) >> } >> >> That will call cbind over and over, causing a relatively slow memory >> re-allocation. See >> (http://pj.freefaculty.org/R/WorkingExamples/stackListItems.R) >> >> Instead, do this to apply Eh2new to each item in data.list >> >> tempbbtemp <- lapply(data.list, Eh2new, weights.mat) >> >> and then smash the results together in one go >> >> tempbb <- do.call("cbind", tempbbtemp) >> >> >> Fourth, I'm not sure on the matrix algebra. Are you sure you need >> solve to get the full inverse of Sig.hat? Once you start checking >> into how estimates are calculated in R, you find that the >> paper-and-pencil matrix algebra style of formula is generally frowned >> upon. OLS (in lm.fit) doesn't do solve(X'X), it uses a QR >> decomposition of matrices. OR look in MASS package ridge regression >> code, where the SVD is used to get the inverse. >> >> I wish I knew enough about the EM algorithm to gaze at your code and >> say "aha, error in line 332", but I'm not. But if you clean up the >> presentation and tighten up the most obvious things, you improve your >> chances that somebody who is an expert will exert him/herself to do >> it. >> >> pj >> >> >>> b follows >>> N(0,\psi) #i.e. bivariate normal >>> where b is the latent variable, Z and X are ni*2 design matrices, sigma >> is >>> the error variance, >>> Y are longitudinal data, i.e. there are ni measurements for object i. >>> Parameters are \beta, \sigma, \psi; call them \theta. >>> >>> I wrote a regular EM, the M step is to maximize the log(f(Y,b;\theta)) >> by >>> taking first order derivatives, setting to 0 and solving the equation. >>> The E step involves the evaluation of E step, using Gauss Hermite >>> approximation. (10 points) >>> >>> All are simulated data. X and Z are naive like cbind(rep(1,m),1:m) >>> After 200 iterations, the estimated \beta converges to the true value >> while >>> \sigma and \psi do not. Even after one iteration, the \sigma goes up >>> from >>> about 10^0 to about 10^1. >>> I am confused since the \hat{\beta} requires \sigma and \psi from >> previous >>> iteration. If something wrong then all estimations should be >>> incorrect... >>> >>> Another question is that I calculated the logf(Y;\theta) to see if it >>> increases after updating \theta. >>> Seems decreasing..... >>> >>> I thought the X and Z are linearly dependent would cause some issue but >>> I >>> also changed the X and Z to some random numbers from normal >>> distribution. >>> >>> I also tried ECM, which converges fast but sigma and psi are not close >>> to >>> the desired values. >>> Is this due to the limitation of some methods that I used? >>> >>> Can any one give some help? I am stuck for a week. I can send the code >>> to >>> you. >>> First time to raise a question here. Not sure if it is proper to post >>> all >>> code. >>> >> ########################################################################## >>> # the main R script >>> n=100 >>> beta=c(-0.5,1) >>> vvar=2 #sigma^2=2 >>> psi=matrix(c(1,0.2,0.2,1),2,2) >>> b.m.true=mvrnorm(n=n,mu=c(0,0),Sigma=psi) #100*2 matrix, each row is >>> the >>> b_i >>> Xi=cbind(rnorm(7,mean=2,sd=0.5),log(2:8)) #Xi=cbind(rep(1,7),1:7) >>> y.m=matrix(NA,nrow=n,ncol=nrow(Xi)) #100*7, each row is a y_i >>> Zi=Xi >>> >>> b.list=as.list(data.frame(t(b.m.true))) >>> psi.old=matrix(c(0.5,0.4,0.4,0.5),2,2) #starting psi, beta and >>> var, >> not >>> exactly the same as the true value >>> beta.old=c(-0.3,0.7) >>> var.old=1.7 >>> >>> gausspar=gauss.quad(10,kind="hermite",alpha=0,beta=0) >>> >>> data.list.wob=list() >>> for (i in 1:n) >>> { >>> data.list.wob[[i]]=list(Xi=Xi,yi=y.m[i,],Zi=Zi) >>> } >>> >>> #compute true loglikelihood and initial loglikelihood >>> truelog=0 >>> for (i in 1:length(data.list.wob)) >>> { >>> truelog=truelog+loglike(data.list.wob[[i]],vvar,beta,psi) >>> } >>> >>> truelog >>> >>> loglikeseq=c() >>> loglikeseq[1]=sum(sapply(data.list.wob,loglike)) >>> >>> ECM=F >>> >>> >>> for (m in 1:300) >>> { >>> >>> Sig.hat=Zi%*%psi.old%*%t(Zi)+var.old*diag(nrow(Zi)) >>> W.hat=psi.old-psi.old%*%t(Zi)%*%solve(Sig.hat)%*%Zi%*%psi.old >>> >>> Sigb=psi.old-psi.old%*%t(Zi)%*%solve(Sig.hat)%*%Zi%*%psi.old >>> det(Sigb)^(-0.5) >>> >>> Y.minus.X.beta=t(t(y.m)-c(Xi%*%beta.old)) >>> >> miu.m=t(apply(Y.minus.X.beta,MARGIN=1,function(s,B=psi.old%*%t(Zi)%*%solve(Sig.hat)) >>> { >>> B%*%s >>> } >>> )) ### each row is the miu_i >>> >>> >>> tmp1=permutations(length(gausspar$nodes),2,repeats.allowed=T) >>> tmp2=c(tmp1) >>> a.mat=matrix(gausspar$nodes[tmp2],nrow=nrow(tmp1)) #a1,a1 >>> >>> #a1,a2 >>> #... >>> >> #a10,a9 >>> >> #a10,a10 >>> a.mat.list=as.list(data.frame(t(a.mat))) >>> tmp1=permutations(length(gausspar$weights),2,repeats.allowed=T) >>> tmp2=c(tmp1) >>> weights.mat=matrix(gausspar$weights[tmp2],nrow=nrow(tmp1)) #w1,w1 >>> >>> #w1,w2 >>> #... >>> >> #w10,w9 >>> >> #w10,w10 >>> L=chol(solve(W.hat)) >>> LL=sqrt(2)*solve(L) >>> halfb=t(LL%*%t(a.mat)) >>> >>> # each page of b.array is all values of bi_k and bi_j for b_i >>> b.list=list() >>> for (i in 1:n) >>> { >>> b.list[[i]]=t(t(halfb)+miu.m[i,]) >>> } >>> >>> #generate a list, each page contains Xi,yi,Zi, >>> data.list=list() >>> for (i in 1:n) >>> { >>> data.list[[i]]=list(Xi=Xi,yi=y.m[i,],Zi=Zi,b=b.list[[i]]) >>> } >>> >>> #update sigma^2 >>> t1=proc.time() >>> tempaa=c() >>> tempbb=c() >>> for (j in 1:n) >>> { >>> >> #tempaa[j]=Eh4new(datai=data.list[[j]],weights.m=weights.mat,beta=beta.old) >>> >> tempbb[j]=Eh4newv2(datai=data.list[[j]],weights.m=weights.mat,beta=beta.old) >>> >>> } >>> var.new=mean(tempbb) >>> if (ECM==T){var.old=var.new} >>> >>> >> sumXiXi=matrix(rowSums(sapply(data.list,function(s){t(s$Xi)%*%(s$Xi)})),ncol=ncol(Xi)) >>> tempbb=c() >>> for (j in 1:n) >>> { >>> tempbb=cbind(tempbb,Eh2new(data.list[[j]],weights.m=weights.mat)) >>> } >>> beta.new=solve(sumXiXi)%*%rowSums(tempbb) >>> >>> if (ECM==T){beta.old=beta.new} >>> >>> #update psi >>> tempcc=array(NA,c(2,2,n)) >>> sumtempcc=matrix(0,2,2) >>> for (j in 1:n) >>> { >>> tempcc[,,j]=Eh1new(data.list[[j]],weights.m=weights.mat) >>> sumtempcc=sumtempcc+tempcc[,,j] >>> } >>> psi.new=sumtempcc/n >>> >>> #stop >>> >> if(sum(abs(beta.old-beta.new))+sum(abs(psi.old-psi.new))+sum(abs(var.old-var.new))<0.01) >>> {print("converge, stop");break;} >>> >>> #update >>> var.old=var.new >>> psi.old=psi.new >>> beta.old=beta.new >>> loglikeseq[m+1]=sum(sapply(data.list,loglike)) >>> } # end of M loop >>> >>> ######################################################################## >>> #function to calculate loglikelihood >>> >> loglike=function(datai=data.list[[i]],vvar=var.old,beta=beta.old,psi=psi.old) >>> { >>> >> temp1=-0.5*log(det(vvar*diag(nrow(datai$Zi))+datai$Zi%*%psi%*%t(datai$Zi))) >>> >> temp2=-0.5*t(datai$yi-datai$Xi%*%beta)%*%solve(vvar*diag(nrow(datai$Zi))+datai$Zi%*%psi%*%t(datai$Zi))%*%(datai$yi-datai$Xi%*%beta) >>> return(temp1+temp2) >>> } >>> >>> ####################################################################### >>> #functions to evaluate the conditional expection, saved as Efun v2.R >>> #Eh1new=E(bibi') >>> #Eh2new=E(X'(y-Zbi)) >>> #Eh3new=E(bi'Z'Zbi) >>> #Eh4new=E(Y-Xibeta-Zibi)'(Y-Xibeta-Zibi) >>> #Eh5new=E(Xibeta-yi)'Zibi >>> #Eh6new=E(bi) >>> >>> Eh1new=function(datai=data.list[[i]], >>> weights.m=weights.mat) >>> { >>> #one way >>> #temp=matrix(0,2,2) >>> #for (i in 1:nrow(bi)) >>> #{ >>> #temp=temp+bi[i,]%*%t(bi[i,])*weights.m[i,1]*weights.m[i,2] >>> #} >>> #print(temp) >>> >>> #the other way >>> bi=datai$b >>> tempb=bi*rep(sqrt(weights.m[,1]*weights.m[,2]),2) #quadratic b, so >>> need >>> sqrt >>> #deno=sum(weights.m[,1]*weights.m[,2]) >>> >>> return(t(tempb)%*%tempb/pi) >>> } # end of Eh1 >>> >>> >>> #Eh2new=E(X'(y-Zbi)) >>> Eh2new=function(datai=data.list[[i]], >>> weights.m=weights.mat) >>> { >>> #one way >>> #temp=rep(0,2) >>> #for (j in 1:nrow(bi)) >>> #{ >>> >> #temp=temp+c(t(datai$Xi)%*%(datai$yi-datai$Zi%*%bi[j,])*weights.m[j,1]*weights.m[j,2]) >>> #} >>> #deno=sum(weights.m[,1]*weights.m[,2]) >>> #print(temp/deno) >>> >>> #another way >>> bi=datai$b >>> tempb=bi*rep(weights.m[,1]*weights.m[,2],2) >>> >>> tt=t(datai$Xi)%*%datai$yi-t(datai$Xi)%*%datai$Zi%*%colSums(tempb)/pi >>> return(c(tt)) >>> } # end of Eh2 >>> >>> >>> #Eh3new=E(b'Z'Zbi) >>> Eh3new=function(datai=data.list[[i]], >>> weights.m=weights.mat) >>> { >>> #one way >>> #deno=sum(weights.m[,1]*weights.m[,2]) >>> #tempb=bi*rep(sqrt(weights.m[,1]*weights.m[,2]),2) #quadratic b, so >> need >>> sqrt >>> #sum(apply(datai$Zi%*%t(tempb),MARGIN=2,function(s){sum(s^2)}))/deno >>> >>> #another way >>> bi=datai$b >>> tempb=bi*rep(sqrt(weights.m[,1]*weights.m[,2]),2) #quadratic b, so >>> need >>> sqrt >>> >> return(sum(sapply(as.list(data.frame(datai$Zi%*%t(tempb))),function(s){sum(s^2)}))/pi) >>> } # end of Eh3 >>> >>> #Eh4new=E(Y-Xibeta-Zibi)'(Y-Xibeta-Zibi) >>> Eh4new=function(datai=data.list[[i]], >>> weights.m=weights.mat,beta=beta.old) >>> { >>> #one way >>> #temp=0 >>> #bi=datai$b >>> #tt=c() >>> #for (j in 1:nrow(bi)) >>> #{ >>> >> #tt[j]=sum((datai$yi-datai$Xi%*%beta-datai$Zi%*%bi[j,])^2)*weights.m[j,1]*weights.m[j,2] >>> >> #temp=temp+sum((datai$yi-datai$Xi%*%beta-datai$Zi%*%bi[j,])^2)*weights.m[j,1]*weights.m[j,2] >>> #} >>> #temp/deno >>> >>> # another way >>> bi=datai$b >>> >>> >> tt=sapply(as.list(ata.frame(c(datai$yi-datai$Xi%*%beta)-datai$Zi%*%t(bi))), >>> function(s){sum(s^2)})*(weights.m[,1]*weights.m[,2]) >>> return(sum(tt)/pi) >>> } # end of Eh4 >>> >>> >>> Eh4newv2=function(datai=data.list[[i]], >>> weights.m=weights.mat,beta=beta.old) >>> { >>> bi=datai$b >>> v=weights.m[,1]*weights.m[,2] >>> temp=c() >>> for (i in 1:length(v)) >>> { >>> temp[i]=sum(((datai$yi-datai$Xi%*%beta-datai$Zi%*%bi[i,])*sqrt(v[i]))^2) >>> } >>> return(sum(temp)/pi) >>> } # end of Eh4 >>> >>> >>> #Eh5new=E(Xibeta-yi)'Zib >>> Eh5new=function(datai=data.list[[i]], >>> weights.m=weights.mat,beta=beta.old) >>> { >>> bi=datai$b >>> tempb=bi*rep(weights.m[,1]*weights.m[,2],2) >>> t(datai$Xi%*%beta-datai$yi)%*%(datai$Zi%*%t(tempb)) >>> return(sum(t(datai$Xi%*%beta-datai$yi)%*%(datai$Zi%*%t(tempb)))/pi) >>> } >>> >>> >>> >>> Eh6new=function(datai=data.list[[i]], >>> weights.m=weights.mat) >>> { >>> bi=datai$b >>> tempw=weights.m[,1]*weights.m[,2] >>> for (i in 1:nrow(bi)) >>> { >>> bi[i,]=bi[i,]*tempw[i] >>> } >>> return(colMeans(bi)/pi) >>> } # end of Eh1 >>> >>> >>> >>> >>> >>> >>> >>> >>> -- >>> View this message in context: >> http://r.789695.n4.nabble.com/EM-algorithm-to-find-MLE-of-coeff-in-mixed-effects-model-tp4635315.html >>> Sent from the R help mailing list archive at Nabble.com. >>> >>> ______________________________________________ >>> R-help@r-project.org mailing list >>> https://stat.ethz.ch/mailman/listinfo/r-help >>> PLEASE do read the posting guide >> http://www.R-project.org/posting-guide.html >>> and provide commented, minimal, self-contained, reproducible code. >> >> >> >> -- >> Paul E. Johnson >> Professor, Political Science Assoc. Director >> 1541 Lilac Lane, Room 504 Center for Research Methods >> University of Kansas University of Kansas >> http://pj.freefaculty.org http://quant.ku.edu >> > > [[alternative HTML version deleted]] > > ______________________________________________ > R-help@r-project.org mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide > http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. ____________________________________________________________ FREE ONLINE PHOTOSHARING - Share your photos online with your friends and family! Visit http://www.inbox.com/photosharing to find out more! ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.