Dear Paul, Thank you for your suggestion. I was moved by the fact that people are so nice to help learners and ask for nothing. With your help, I made some changes to my code and add more comments, try to make things more clear. If this R email list allow me to upload a pdf file to illustrate the formula, it will be great. The reason I do not use lme4 is that later I plan to use this for a more complicated model (Y,T), Y is the same response of mixed model and T is a drop out process. (Frankly I did it for the more complicated model first and got NaN hessian after one iteration, so I turned to the simple model.) In the code, the m loop is the EM iterations. About efficiency, thank you again for pointing it out. I compared sapply and for loop, they are tie and for loop is even better sometimes. In a paper by Bates, he mentioned that the asymptotic properties of beta is kind of independent of the other two parameters. But it seems that paper was submitted but I did not find it on google scholar. Not sure if it is the reason for my results. That is why I hope some expert who have done some simulation similar may be willing to give some suggestion. I may turn to other methods to calculate the conditional expection of the latent variable as the same time.
Modified code is as below: # library(PerformanceAnalytics) # install.packages("gregmisc") # install.packages("statmod") library(gregmisc) library(MASS) library(statmod) ## function to calculate loglikelihood loglike <- function(datai = data.list[[i]], vvar = var.old, beta = beta.old, psi = psi.old) { temp1 <- -0.5 * log(det(vvar * diag(nrow(datai$Zi)) + datai$Zi %*% psi %*% t(datai$Zi))) temp2 <- -0.5 * t(datai$yi - datai$Xi %*% beta) %*% solve(vvar * diag(nrow(datai$Zi)) + datai$Zi %*% psi %*% t(datai$Zi)) %*% (datai$yi - datai$Xi %*% beta) temp1 + temp2 } ## functions to evaluate the conditional expection, saved as Efun v2.R ## Eh1new=E(bibi') ## Eh2new=E(X'(y-Zbi)) ## Eh3new=E(bi'Z'Zbi) ## Eh4new=E(Y-Xibeta-Zibi)'(Y-Xibeta-Zibi) ## Eh5new=E(Xibeta-yi)'Zibi ## Eh6new=E(bi) Eh1new <- function(datai = data.list[[i]], weights.m = weights.mat) { bi <- datai$b tempb <- bi * rep(sqrt(weights.m[, 1] * weights.m[, 2]), 2) #quadratic b, so need sqrt t(tempb) %*% tempb/pi } # end of Eh1 # Eh2new=E(X'(y-Zbi)) Eh2new <- function(datai = data.list[[i]], weights.m = weights.mat) { bi <- datai$b tempb <- bi * rep(weights.m[, 1] * weights.m[, 2], 2) tt <- t(datai$Xi) %*% datai$yi - t(datai$Xi) %*% datai$Zi %*% colSums(tempb)/pi c(tt) } # end of Eh2 # Eh3new=E(b'Z'Zbi) Eh3new <- function(datai = data.list[[i]], weights.m = weights.mat) { bi <- datai$b tempb <- bi * rep(sqrt(weights.m[, 1] * weights.m[, 2]), 2) #quadratic b, so need sqrt sum(sapply(as.list(data.frame(datai$Zi %*% t(tempb))), function(s) { sum(s^2) }))/pi } # end of Eh3 # Eh4new=E(Y-Xibeta-Zibi)'(Y-Xibeta-Zibi) Eh4new <- function(datai = data.list[[i]], weights.m = weights.mat, beta = beta.old) { bi <- datai$b tt <- sapply(as.list(ata.frame(c(datai$yi - datai$Xi %*% beta) - datai$Zi %*% t(bi))), function(s) { sum(s^2) }) * (weights.m[, 1] * weights.m[, 2]) sum(tt)/pi } # end of Eh4 Eh4newv2 <- function(datai = data.list[[i]], weights.m = weights.mat, beta = beta.old) { bi <- datai$b v <- weights.m[, 1] * weights.m[, 2] temp <- c() for (i in 1:length(v)) { temp[i] <- sum(((datai$yi - datai$Xi %*% beta - datai$Zi %*% bi[i, ]) * sqrt(v[i]))^2) } sum(temp)/pi } # end of Eh4 # Eh5new=E(Xibeta-yi)'Zib Eh5new <- function(datai = data.list[[i]], weights.m = weights.mat, beta = beta.old) { bi <- datai$b tempb <- bi * rep(weights.m[, 1] * weights.m[, 2], 2) t(datai$Xi %*% beta - datai$yi) %*% (datai$Zi %*% t(tempb)) sum(t(datai$Xi %*% beta - datai$yi) %*% (datai$Zi %*% t(tempb)))/pi } Eh6new <- function(datai = data.list[[i]], weights.m = weights.mat) { bi <- datai$b tempw <- weights.m[, 1] * weights.m[, 2] for (i in 1:nrow(bi)) { bi[i, ] <- bi[i, ] * tempw[i] } colMeans(bi)/pi } # end of Eh6 ## the main R script ################### initial the values and generate the data ################## n <- 100 #number of observations beta <- c(-0.5, 1) #true coefficient of fixed effects vvar <- 2 #sigma^2=2 #true error variance of epsilon psi <- matrix(c(1, 0.2, 0.2, 1), 2, 2) #covariance matrix of random effects b b.m.true <- mvrnorm(n = n, mu = c(0, 0), Sigma = psi) #100*2 matrix, each row is the b_i Xi <- cbind(rnorm(7, mean = 2, sd = 0.5), log(2:8)) Zi <- Xi y.m <- matrix(NA, nrow = n, ncol = nrow(Xi)) #100*7, each row is a y_i Zi=Xi for( i in 1:n) { y.m[i,]=mvrnorm(1,mu=(Xi%*%beta+Zi%*%b.m.true[i,]),vvar*diag(nrow(Xi))) } b.list <- as.list(data.frame(t(b.m.true))) psi.old <- matrix(c(0.5, 0.4, 0.4, 0.5), 2, 2) #starting psi, beta and var,not the true values beta.old <- c(-0.3, 0.7) var.old <- 1.7 gausspar <- gauss.quad(10, kind = "hermite", alpha = 0, beta = 0) # data.list.wob contains X,Y and Z, but no b's data.list.wob <- list() for (i in 1:n) { data.list.wob[[i]] <- list(Xi = Xi, yi = y.m[i, ], Zi = Zi) } # compute true loglikelihood and initial loglikelihood truelog <- 0 for (i in 1:length(data.list.wob)) { truelog <- truelog + loglike(data.list.wob[[i]], vvar, beta, psi) } truelog loglikeseq <- c() loglikeseq[1] <- sum(sapply(data.list.wob, loglike)) ECM <- F ############################# E-M steps ################################################ # m loop is the EM iteration for (m in 1:300) { Sig.hat <- Zi %*% psi.old %*% t(Zi) + var.old * diag(nrow(Zi)) #estimated covariance matrix of y Sig.hat.inv <- solve(Sig.hat) W.hat <- psi.old - psi.old %*% t(Zi) %*% Sig.hat.inv %*% Zi %*% psi.old Sigb <- psi.old - psi.old %*% t(Zi) %*% Sig.hat.inv %*% Zi %*% psi.old #estimated covariance matrix of b Y.minus.X.beta <- t(t(y.m) - c(Xi %*% beta.old)) miu.m <- t(apply(Y.minus.X.beta, MARGIN = 1, function(s, B = psi.old %*% t(Zi) %*% solve(Sig.hat)) { B %*% s })) ### each row is the miu_i tmp1 <- permutations(length(gausspar$nodes), 2, repeats.allowed = T) tmp2 <- c(tmp1) a.mat <- matrix(gausspar$nodes[tmp2], nrow = nrow(tmp1)) # a1,a1 # a1,a2 # ... # a10,a9 # a10,a10 # a.mat are all ordered pairs of gauss hermite nodes a.mat.list <- as.list(data.frame(t(a.mat))) tmp1 <- permutations(length(gausspar$weights), 2, repeats.allowed = T) tmp2 <- c(tmp1) weights.mat <- matrix(gausspar$weights[tmp2], nrow = nrow(tmp1)) # w1,w1 # w1,w2 # ... # w10,w9 # w10,w10 # weights.mat are all ordered pairs of gauss hermite weights L <- chol(solve(W.hat)) LL <- sqrt(2) * solve(L) halfb <- t(LL %*% t(a.mat)) # each page of b.array is all values of bi_k and bi_j for b_i # need to calculate those b's as linear functions of nodes since the original integral needs transformation to use gauss approximation b.list <- list() for (i in 1:n) { b.list[[i]] <- t(t(halfb) + miu.m[i, ]) } # generate a list, each page contains Xi,yi,Zi, and b's data.list <- list() for (i in 1:n) { data.list[[i]] <- list(Xi = Xi, yi = y.m[i, ], Zi = Zi, b = b.list[[i]]) } # update sigma^2 t1 <- proc.time() tempaa <- c() tempbb <- c() for (j in 1:n) { tempbb[j] <- Eh4newv2(datai = data.list[[j]], weights.m = weights.mat, beta = beta.old) } var.new <- mean(tempbb) if (ECM == T) { var.old <- var.new } sumXiXi <- matrix(rowSums(sapply(data.list, function(s) { t(s$Xi) %*% (s$Xi) })), ncol = ncol(Xi)) tempbb=sapply(data.list,Eh2new) beta.new <- solve(sumXiXi) %*% rowSums(tempbb) if (ECM == T) { beta.old <- beta.new } # update psi tempcc <- array(NA, c(2, 2, n)) sumtempcc <- matrix(0, 2, 2) for (j in 1:n) { tempcc[, , j] <- Eh1new(data.list[[j]], weights.m = weights.mat) sumtempcc <- sumtempcc + tempcc[, , j] } psi.new <- sumtempcc/n # stop condition if (sum(abs(beta.old - beta.new)) + sum(abs(psi.old - psi.new)) + sum(abs(var.old - var.new)) < 0.01) { print("converge, stop") break } # update parameters var.old <- var.new psi.old <- psi.new beta.old <- beta.new loglikeseq[m + 1] <- sum(sapply(data.list, loglike)) } # end of M loop On Tue, Jul 3, 2012 at 5:06 PM, Paul Johnson <pauljoh...@gmail.com> wrote: > On Tue, Jul 3, 2012 at 12:41 PM, jimmycloud <jimmycl...@gmail.com> wrote: > > I have a general question about coefficients estimation of the mixed > model. > > > > I have 2 ideas for you. > > 1. Fit with lme4 package, using the lmer function. That's what it is for. > > 2. If you really want to write your own EM algorithm, I don't feel > sure that very many R and EM experts are going to want to read through > the code you have because you don't follow some of the minimal > readability guidelines. I accept the fact that there is no officially > mandated R style guide, except for "indent with 4 spaces, not tabs." > But there are some almost universally accepted basics like > > 1. Use <-, not =, for assignment > 2. put a space before and after symbols like <-, = , + , * , and so forth. > 3. I'd suggest you get used to putting squiggly braces in the K&R style. > > I have found the formatR package's tool tidy.source can do this > nicely. From tidy.source, here's what I get with your code > > http://pj.freefaculty.org/R/em2.R > > Much more readable! > (I inserted library(MASS) for you at the top, otherwise this doesn't > even survive the syntax check.) > > When I copy from email to Emacs, some line-breaking monkey-business > occurs, but I expect you get the idea. > > Now, looking at your cleaned up code, I can see some things to tidy up > to improve the chances that some expert will look. > > First, R functions don't require "return" at the end, many experts > consider it distracting. (Run "lm" or such and review how they write. > No return at the end of functions). > > Second, about that big for loop at the top, the one that goes from m 1:300 > > I don't know what that loop is doing, but there's some code in it that > I'm suspicious of. For example, this part: > > W.hat <- psi.old - psi.old %*% t(Zi) %*% solve(Sig.hat) %*% Zi %*% > psi.old > > Sigb <- psi.old - psi.old %*% t(Zi) %*% solve(Sig.hat) %*% Zi %*% > psi.old > > > First, you've caused the possibly slow calculation of solve > (Sig.hat) to run two times. If you really need it, run it once and > save the result. > > > Second, a for loop is not necessarily slow, but it may be easier to > read if you re-write this: > > for (j in 1:n) { > tempaa[j]=Eh4new(datai=data.list[[j]],weights.m=weights.mat,beta=beta.old) > tempbb[j] <- Eh4newv2(datai = data.list[[j]], weights.m = > weights.mat, beta = beta.old) > } > > like this: > > tempaa <- lapply(data.list, Eh4new, weights.m, beta.old) > tempbb <- lapply(data.list, Eh4newv2, weights.m, beta.old) > > Third, here is a no-no > > tempbb <- c() > for (j in 1:n) { > tempbb <- cbind(tempbb, Eh2new(data.list[[j]], weights.m = > weights.mat)) > } > > That will call cbind over and over, causing a relatively slow memory > re-allocation. See > (http://pj.freefaculty.org/R/WorkingExamples/stackListItems.R) > > Instead, do this to apply Eh2new to each item in data.list > > tempbbtemp <- lapply(data.list, Eh2new, weights.mat) > > and then smash the results together in one go > > tempbb <- do.call("cbind", tempbbtemp) > > > Fourth, I'm not sure on the matrix algebra. Are you sure you need > solve to get the full inverse of Sig.hat? Once you start checking > into how estimates are calculated in R, you find that the > paper-and-pencil matrix algebra style of formula is generally frowned > upon. OLS (in lm.fit) doesn't do solve(X'X), it uses a QR > decomposition of matrices. OR look in MASS package ridge regression > code, where the SVD is used to get the inverse. > > I wish I knew enough about the EM algorithm to gaze at your code and > say "aha, error in line 332", but I'm not. But if you clean up the > presentation and tighten up the most obvious things, you improve your > chances that somebody who is an expert will exert him/herself to do > it. > > pj > > > > b follows > > N(0,\psi) #i.e. bivariate normal > > where b is the latent variable, Z and X are ni*2 design matrices, sigma > is > > the error variance, > > Y are longitudinal data, i.e. there are ni measurements for object i. > > Parameters are \beta, \sigma, \psi; call them \theta. > > > > I wrote a regular EM, the M step is to maximize the log(f(Y,b;\theta)) > by > > taking first order derivatives, setting to 0 and solving the equation. > > The E step involves the evaluation of E step, using Gauss Hermite > > approximation. (10 points) > > > > All are simulated data. X and Z are naive like cbind(rep(1,m),1:m) > > After 200 iterations, the estimated \beta converges to the true value > while > > \sigma and \psi do not. Even after one iteration, the \sigma goes up from > > about 10^0 to about 10^1. > > I am confused since the \hat{\beta} requires \sigma and \psi from > previous > > iteration. If something wrong then all estimations should be incorrect... > > > > Another question is that I calculated the logf(Y;\theta) to see if it > > increases after updating \theta. > > Seems decreasing..... > > > > I thought the X and Z are linearly dependent would cause some issue but I > > also changed the X and Z to some random numbers from normal distribution. > > > > I also tried ECM, which converges fast but sigma and psi are not close to > > the desired values. > > Is this due to the limitation of some methods that I used? > > > > Can any one give some help? I am stuck for a week. I can send the code to > > you. > > First time to raise a question here. Not sure if it is proper to post all > > code. > > > ########################################################################## > > # the main R script > > n=100 > > beta=c(-0.5,1) > > vvar=2 #sigma^2=2 > > psi=matrix(c(1,0.2,0.2,1),2,2) > > b.m.true=mvrnorm(n=n,mu=c(0,0),Sigma=psi) #100*2 matrix, each row is the > > b_i > > Xi=cbind(rnorm(7,mean=2,sd=0.5),log(2:8)) #Xi=cbind(rep(1,7),1:7) > > y.m=matrix(NA,nrow=n,ncol=nrow(Xi)) #100*7, each row is a y_i > > Zi=Xi > > > > b.list=as.list(data.frame(t(b.m.true))) > > psi.old=matrix(c(0.5,0.4,0.4,0.5),2,2) #starting psi, beta and var, > not > > exactly the same as the true value > > beta.old=c(-0.3,0.7) > > var.old=1.7 > > > > gausspar=gauss.quad(10,kind="hermite",alpha=0,beta=0) > > > > data.list.wob=list() > > for (i in 1:n) > > { > > data.list.wob[[i]]=list(Xi=Xi,yi=y.m[i,],Zi=Zi) > > } > > > > #compute true loglikelihood and initial loglikelihood > > truelog=0 > > for (i in 1:length(data.list.wob)) > > { > > truelog=truelog+loglike(data.list.wob[[i]],vvar,beta,psi) > > } > > > > truelog > > > > loglikeseq=c() > > loglikeseq[1]=sum(sapply(data.list.wob,loglike)) > > > > ECM=F > > > > > > for (m in 1:300) > > { > > > > Sig.hat=Zi%*%psi.old%*%t(Zi)+var.old*diag(nrow(Zi)) > > W.hat=psi.old-psi.old%*%t(Zi)%*%solve(Sig.hat)%*%Zi%*%psi.old > > > > Sigb=psi.old-psi.old%*%t(Zi)%*%solve(Sig.hat)%*%Zi%*%psi.old > > det(Sigb)^(-0.5) > > > > Y.minus.X.beta=t(t(y.m)-c(Xi%*%beta.old)) > > > miu.m=t(apply(Y.minus.X.beta,MARGIN=1,function(s,B=psi.old%*%t(Zi)%*%solve(Sig.hat)) > > { > > B%*%s > > } > > )) ### each row is the miu_i > > > > > > tmp1=permutations(length(gausspar$nodes),2,repeats.allowed=T) > > tmp2=c(tmp1) > > a.mat=matrix(gausspar$nodes[tmp2],nrow=nrow(tmp1)) #a1,a1 > > #a1,a2 > > #... > > > #a10,a9 > > > #a10,a10 > > a.mat.list=as.list(data.frame(t(a.mat))) > > tmp1=permutations(length(gausspar$weights),2,repeats.allowed=T) > > tmp2=c(tmp1) > > weights.mat=matrix(gausspar$weights[tmp2],nrow=nrow(tmp1)) #w1,w1 > > #w1,w2 > > #... > > > #w10,w9 > > > #w10,w10 > > L=chol(solve(W.hat)) > > LL=sqrt(2)*solve(L) > > halfb=t(LL%*%t(a.mat)) > > > > # each page of b.array is all values of bi_k and bi_j for b_i > > b.list=list() > > for (i in 1:n) > > { > > b.list[[i]]=t(t(halfb)+miu.m[i,]) > > } > > > > #generate a list, each page contains Xi,yi,Zi, > > data.list=list() > > for (i in 1:n) > > { > > data.list[[i]]=list(Xi=Xi,yi=y.m[i,],Zi=Zi,b=b.list[[i]]) > > } > > > > #update sigma^2 > > t1=proc.time() > > tempaa=c() > > tempbb=c() > > for (j in 1:n) > > { > > > #tempaa[j]=Eh4new(datai=data.list[[j]],weights.m=weights.mat,beta=beta.old) > > > tempbb[j]=Eh4newv2(datai=data.list[[j]],weights.m=weights.mat,beta=beta.old) > > > > } > > var.new=mean(tempbb) > > if (ECM==T){var.old=var.new} > > > > > sumXiXi=matrix(rowSums(sapply(data.list,function(s){t(s$Xi)%*%(s$Xi)})),ncol=ncol(Xi)) > > tempbb=c() > > for (j in 1:n) > > { > > tempbb=cbind(tempbb,Eh2new(data.list[[j]],weights.m=weights.mat)) > > } > > beta.new=solve(sumXiXi)%*%rowSums(tempbb) > > > > if (ECM==T){beta.old=beta.new} > > > > #update psi > > tempcc=array(NA,c(2,2,n)) > > sumtempcc=matrix(0,2,2) > > for (j in 1:n) > > { > > tempcc[,,j]=Eh1new(data.list[[j]],weights.m=weights.mat) > > sumtempcc=sumtempcc+tempcc[,,j] > > } > > psi.new=sumtempcc/n > > > > #stop > > > if(sum(abs(beta.old-beta.new))+sum(abs(psi.old-psi.new))+sum(abs(var.old-var.new))<0.01) > > {print("converge, stop");break;} > > > > #update > > var.old=var.new > > psi.old=psi.new > > beta.old=beta.new > > loglikeseq[m+1]=sum(sapply(data.list,loglike)) > > } # end of M loop > > > > ######################################################################## > > #function to calculate loglikelihood > > > loglike=function(datai=data.list[[i]],vvar=var.old,beta=beta.old,psi=psi.old) > > { > > > temp1=-0.5*log(det(vvar*diag(nrow(datai$Zi))+datai$Zi%*%psi%*%t(datai$Zi))) > > > temp2=-0.5*t(datai$yi-datai$Xi%*%beta)%*%solve(vvar*diag(nrow(datai$Zi))+datai$Zi%*%psi%*%t(datai$Zi))%*%(datai$yi-datai$Xi%*%beta) > > return(temp1+temp2) > > } > > > > ####################################################################### > > #functions to evaluate the conditional expection, saved as Efun v2.R > > #Eh1new=E(bibi') > > #Eh2new=E(X'(y-Zbi)) > > #Eh3new=E(bi'Z'Zbi) > > #Eh4new=E(Y-Xibeta-Zibi)'(Y-Xibeta-Zibi) > > #Eh5new=E(Xibeta-yi)'Zibi > > #Eh6new=E(bi) > > > > Eh1new=function(datai=data.list[[i]], > > weights.m=weights.mat) > > { > > #one way > > #temp=matrix(0,2,2) > > #for (i in 1:nrow(bi)) > > #{ > > #temp=temp+bi[i,]%*%t(bi[i,])*weights.m[i,1]*weights.m[i,2] > > #} > > #print(temp) > > > > #the other way > > bi=datai$b > > tempb=bi*rep(sqrt(weights.m[,1]*weights.m[,2]),2) #quadratic b, so need > > sqrt > > #deno=sum(weights.m[,1]*weights.m[,2]) > > > > return(t(tempb)%*%tempb/pi) > > } # end of Eh1 > > > > > > #Eh2new=E(X'(y-Zbi)) > > Eh2new=function(datai=data.list[[i]], > > weights.m=weights.mat) > > { > > #one way > > #temp=rep(0,2) > > #for (j in 1:nrow(bi)) > > #{ > > > #temp=temp+c(t(datai$Xi)%*%(datai$yi-datai$Zi%*%bi[j,])*weights.m[j,1]*weights.m[j,2]) > > #} > > #deno=sum(weights.m[,1]*weights.m[,2]) > > #print(temp/deno) > > > > #another way > > bi=datai$b > > tempb=bi*rep(weights.m[,1]*weights.m[,2],2) > > > > tt=t(datai$Xi)%*%datai$yi-t(datai$Xi)%*%datai$Zi%*%colSums(tempb)/pi > > return(c(tt)) > > } # end of Eh2 > > > > > > #Eh3new=E(b'Z'Zbi) > > Eh3new=function(datai=data.list[[i]], > > weights.m=weights.mat) > > { > > #one way > > #deno=sum(weights.m[,1]*weights.m[,2]) > > #tempb=bi*rep(sqrt(weights.m[,1]*weights.m[,2]),2) #quadratic b, so > need > > sqrt > > #sum(apply(datai$Zi%*%t(tempb),MARGIN=2,function(s){sum(s^2)}))/deno > > > > #another way > > bi=datai$b > > tempb=bi*rep(sqrt(weights.m[,1]*weights.m[,2]),2) #quadratic b, so need > > sqrt > > > return(sum(sapply(as.list(data.frame(datai$Zi%*%t(tempb))),function(s){sum(s^2)}))/pi) > > } # end of Eh3 > > > > #Eh4new=E(Y-Xibeta-Zibi)'(Y-Xibeta-Zibi) > > Eh4new=function(datai=data.list[[i]], > > weights.m=weights.mat,beta=beta.old) > > { > > #one way > > #temp=0 > > #bi=datai$b > > #tt=c() > > #for (j in 1:nrow(bi)) > > #{ > > > #tt[j]=sum((datai$yi-datai$Xi%*%beta-datai$Zi%*%bi[j,])^2)*weights.m[j,1]*weights.m[j,2] > > > #temp=temp+sum((datai$yi-datai$Xi%*%beta-datai$Zi%*%bi[j,])^2)*weights.m[j,1]*weights.m[j,2] > > #} > > #temp/deno > > > > # another way > > bi=datai$b > > > > > tt=sapply(as.list(ata.frame(c(datai$yi-datai$Xi%*%beta)-datai$Zi%*%t(bi))), > > function(s){sum(s^2)})*(weights.m[,1]*weights.m[,2]) > > return(sum(tt)/pi) > > } # end of Eh4 > > > > > > Eh4newv2=function(datai=data.list[[i]], > > weights.m=weights.mat,beta=beta.old) > > { > > bi=datai$b > > v=weights.m[,1]*weights.m[,2] > > temp=c() > > for (i in 1:length(v)) > > { > > temp[i]=sum(((datai$yi-datai$Xi%*%beta-datai$Zi%*%bi[i,])*sqrt(v[i]))^2) > > } > > return(sum(temp)/pi) > > } # end of Eh4 > > > > > > #Eh5new=E(Xibeta-yi)'Zib > > Eh5new=function(datai=data.list[[i]], > > weights.m=weights.mat,beta=beta.old) > > { > > bi=datai$b > > tempb=bi*rep(weights.m[,1]*weights.m[,2],2) > > t(datai$Xi%*%beta-datai$yi)%*%(datai$Zi%*%t(tempb)) > > return(sum(t(datai$Xi%*%beta-datai$yi)%*%(datai$Zi%*%t(tempb)))/pi) > > } > > > > > > > > Eh6new=function(datai=data.list[[i]], > > weights.m=weights.mat) > > { > > bi=datai$b > > tempw=weights.m[,1]*weights.m[,2] > > for (i in 1:nrow(bi)) > > { > > bi[i,]=bi[i,]*tempw[i] > > } > > return(colMeans(bi)/pi) > > } # end of Eh1 > > > > > > > > > > > > > > > > > > -- > > View this message in context: > http://r.789695.n4.nabble.com/EM-algorithm-to-find-MLE-of-coeff-in-mixed-effects-model-tp4635315.html > > Sent from the R help mailing list archive at Nabble.com. > > > > ______________________________________________ > > R-help@r-project.org mailing list > > https://stat.ethz.ch/mailman/listinfo/r-help > > PLEASE do read the posting guide > http://www.R-project.org/posting-guide.html > > and provide commented, minimal, self-contained, reproducible code. > > > > -- > Paul E. Johnson > Professor, Political Science Assoc. Director > 1541 Lilac Lane, Room 504 Center for Research Methods > University of Kansas University of Kansas > http://pj.freefaculty.org http://quant.ku.edu > [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.