I just realized that I have sent this only to Mohammed. So here it is to the list:
These two model fits should yield the same results. In fact, if we use some simulated data generated by the model yik=2+0.5*xik1+0.25*xik2+uk+eik , with uk~N(0, 1) and eik~N(0, 1) and compare the results between Stata and R: . xtmixed y xik1 xik2 || id:, reml Mixed-effects REML regression Number of obs = 5000 Group variable: id Number of groups = 1000 Obs per group: min = 5 avg = 5.0 max = 5 Wald chi2(2) = 2083.89 Log restricted-likelihood = -8013.0388 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ y | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- xik1 | .4708663 .025753 18.28 0.000 .4203914 .5213411 xik2 | .2726184 .0256147 10.64 0.000 .2224145 .3228222 _cons | 2.007218 .0354583 56.61 0.000 1.937721 2.076715 ------------------------------------------------------------------------------ ------------------------------------------------------------------------------ Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval] -----------------------------+------------------------------------------------ id: Identity | sd(_cons) | 1.028595 .027431 .9762119 1.083789 -----------------------------+------------------------------------------------ sd(Residual) | .9980663 .0111614 .9764285 1.020184 ------------------------------------------------------------------------------ Linear mixed model fit by REML Formula: y ~ xik1 + xik2 + (1 | id) Data: data3 AIC BIC logLik deviance REMLdev 16036 16069 -8013 16009 16026 Random effects: Groups Name Variance Std.Dev. id (Intercept) 1.05801 1.02859 Residual 0.99614 0.99807 Number of obs: 5000, groups: id, 1000 Fixed effects: Estimate Std. Error t value (Intercept) 2.00722 0.03546 56.61 xik1 0.47087 0.02575 18.28 xik2 0.27262 0.02561 10.64 Correlation of Fixed Effects: (Intr) xik1 xik1 -0.007 xik2 0.005 -0.798 we can see that the results are _exactly_ the same, both for fixed and random effects. The correlation of fixed effects, of which results are coming along when using the -summary- function in R are irrelevant for the model fit. In the above data, variables xik1 and xik2 are drawn from a multivariate normal distribution with r=0.8. Thomas, OPs model contains only varying intercepts so there are no correlations of random effects in his model. I don't know what went wrong. Mohammed, how are your variables measured? Maybe huge differences in scale or something like that are causing a problem in one of the packages. Perhaps try to center or standardize your independent variable and see if that helps. Also note that in general, postings that are concerning multilevel/mixed-effects models might have a better home over at the R mixed model forum (https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models). Joerg On Thu, May 3, 2012 at 4:50 AM, Mohammed Mohammed <m.a.moham...@bham.ac.uk> wrote: > Hi folks > > I am using the lmer function (in the lme4 library) to analyse some data where > individuals are clustered into sets (using the SetID variable) with a single > fixed effect (cc - 0 or 1). The lmer model and output is shown below. > Whilst the fixed effects are consistent with stata (using xtmixed, see > below), the std dev of the random effect for SetID is very very small > (3.5803e-05)compared to stata's (see below 1.002). Any ideas why this should > be happening please....? > > > LMER MODEL > > summary(lmer(AnxietyScore ~ cc + (1|SetID), data=mydf)) > Linear mixed model fit by REML > Formula: AnxietyScore ~ cc + (1 | SetID) > Data: mydf > AIC BIC logLik deviance REMLdev > 493.4 503.4 -242.7 486.6 485.4 > Random effects: > Groups Name Variance Std.Dev. > SetID (Intercept) 1.2819e-09 3.5803e-05 > Residual 1.3352e+01 3.6540e+00 > Number of obs: 90, groups: SetID, 33 > > Fixed effects: > Estimate Std. Error t value > (Intercept) 3.1064 0.5330 5.828 > cc 2.3122 0.7711 2.999 > > Correlation of Fixed Effects: > (Intr) > cc -0.691 > > > STATA XTMIXED > > xtmixed anxietyscore cc || setid:, reml > > Mixed-effects REML regression Number of obs = 90 > Group variable: setid Number of groups = 33 > Log restricted-likelihood = -242.48259 Prob > chi2 = 0.0023 > ------------------------------------------------------------------------------ > anxietyscore | Coef. Std. Err. z P>|z| [95% Conf. Interval] > -------------+---------------------------------------------------------------- > cc | 2.289007 .7492766 3.05 0.002 .8204519 3.757562 > _cons | 3.116074 .5464282 5.70 0.000 2.045094 4.187053 > ------------------------------------------------------------------------------ > ------------------------------------------------------------------------------ > Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval] > -----------------------------+------------------------------------------------ > setid: Identity | > sd(_cons) | 1.002484 .797775 .2107137 4.769382 > -----------------------------+------------------------------------------------ > sd(Residual) | 3.515888 .3281988 2.928045 4.22175 > ------------------------------------------------------------------------------ > > > with thanks & best wishes > M > > [[alternative HTML version deleted]] > > ______________________________________________ > R-help@r-project.org mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.