Thank you very much :)
I search on net and find sometimes response value in logistic model can have 
more than 2 values, and the way of this kinds of regression is called "Ordinal 
Logistic Regression". and even we can caculate it by the same way I mean glm in 
R.
here are some references:
1. http://en.wikipedia.org/wiki/Ordered_logit
2. http://www.stat.ubc.ca/~rollin/teach/643w04/lec/node62.html
above two tell us what is "Ordinal Logistic Regression".
3. http://www.ats.ucla.edu/stat/r/dae/ologit.htm
this show that we can use glm to model it





ÔÚ 2011-11-21 00:56:33£¬"Uwe Ligges" <lig...@statistik.tu-dortmund.de> дµÀ£º
>
>
>On 20.11.2011 17:27, ÍÀ¾Ï´«Àñ wrote:
>> I worried it too, Do you have idear that what tools I can use?
>
>
>Depends on your aims - what you want to do with the fitted model.
>A multinomial model, some kind of discriminant analysis (lda, qda), tree 
>based methods, svm and so son come to mind. You probably want to discuss 
>this on some statistics mailing list/forum or among local experts rather 
>than on the R list. Since this is actually not that R releated.
>
>Uwe Ligges
>
>
>
>>
>>
>>
>>
>> ÔÚ 2011-11-21 00:13:26£¬"Uwe Ligges"<lig...@statistik.tu-dortmund.de>  дµÀ£º
>>>
>>>
>>> On 20.11.2011 16:58, ÍÀ¾Ï´«Àñ wrote:
>>>> Thank you Ligges :)
>>>> one more question:
>>>> my response value "diagnostic" have 4 levels (0, 1, 2 and 3), so I use it 
>>>> like this:
>>>> "as.factor(diagnostic) ~ as.factor(7161521) +as.factor(2281517)"
>>>> Is it all right?
>>>
>>>
>>> Uhh. 4 levels? Than I doubt logistic regression is the right tool for
>>> you. Please revisit the theory first: It is intended for 2 levels...
>>>
>>>
>>> Uwe Ligges
>>>
>>>
>>>
>>>
>>>
>>>>
>>>>
>>>>
>>>>
>>>> ÔÚ 2011-11-20 23:45:23£¬"Uwe Ligges"<lig...@statistik.tu-dortmund.de>   
>>>> дµÀ£º
>>>>>
>>>>>
>>>>> On 20.11.2011 12:46, tujchl wrote:
>>>>>> HI
>>>>>>
>>>>>> I use glm in R to do logistic regression. and treat both response and
>>>>>> predictor as factor
>>>>>> In my first try:
>>>>>>
>>>>>> *******************************************************************************
>>>>>> Call:
>>>>>> glm(formula = as.factor(diagnostic) ~ as.factor(7161521) +
>>>>>> as.factor(2281517), family = binomial())
>>>>>>
>>>>>> Deviance Residuals:
>>>>>> Min 1Q Median 3Q Max
>>>>>> -1.5370 -1.0431 -0.9416 1.3065 1.4331
>>>>>>
>>>>>> Coefficients:
>>>>>> Estimate Std. Error z value Pr(>|z|)
>>>>>> (Intercept) -0.58363 0.27948 -2.088 0.0368 *
>>>>>> as.factor(7161521)2 1.39811 0.66618 2.099 0.0358 *
>>>>>> as.factor(7161521)3 0.28192 0.83255 0.339 0.7349
>>>>>> as.factor(2281517)2 -1.11284 0.63692 -1.747 0.0806 .
>>>>>> as.factor(2281517)3 -0.02286 0.80708 -0.028 0.9774
>>>>>> ---
>>>>>> Signif. codes: 0 ¡®***¡¯ 0.001 ¡®**¡¯ 0.01 ¡®*¡¯ 0.05 ¡®.¡¯ 0.1 ¡® ¡¯ 1
>>>>>>
>>>>>> (Dispersion parameter for binomial family taken to be 1)
>>>>>>
>>>>>> Null deviance: 678.55 on 498 degrees of freedom
>>>>>> Residual deviance: 671.20 on 494 degrees of freedom
>>>>>> AIC: 681.2
>>>>>>
>>>>>> Number of Fisher Scoring iterations: 4
>>>>>> *******************************************************************************
>>>>>>
>>>>>> And I remodel it and *want no intercept*:
>>>>>> *******************************************************************************
>>>>>> Call:
>>>>>> glm(formula = as.factor(diagnostic) ~ as.factor(2281517) +
>>>>>> as.factor(7161521) - 1, family = binomial())
>>>>>>
>>>>>> Deviance Residuals:
>>>>>> Min 1Q Median 3Q Max
>>>>>> -1.5370 -1.0431 -0.9416 1.3065 1.4331
>>>>>>
>>>>>> Coefficients:
>>>>>> Estimate Std. Error z value Pr(>|z|)
>>>>>> as.factor(2281517)1 -0.5836 0.2795 -2.088 0.0368 *
>>>>>> as.factor(2281517)2 -1.6965 0.6751 -2.513 0.0120 *
>>>>>> as.factor(2281517)3 -0.6065 0.8325 -0.728 0.4663
>>>>>> as.factor(7161521)2 1.3981 0.6662 2.099 0.0358 *
>>>>>> as.factor(7161521)3 0.2819 0.8325 0.339 0.7349
>>>>>> ---
>>>>>> Signif. codes: 0 ¡®***¡¯ 0.001 ¡®**¡¯ 0.01 ¡®*¡¯ 0.05 ¡®.¡¯ 0.1 ¡® ¡¯ 1
>>>>>>
>>>>>> (Dispersion parameter for binomial family taken to be 1)
>>>>>>
>>>>>> Null deviance: 691.76 on 499 degrees of freedom
>>>>>> Residual deviance: 671.20 on 494 degrees of freedom
>>>>>> AIC: 681.2
>>>>>>
>>>>>> Number of Fisher Scoring iterations: 4
>>>>>> *******************************************************************************
>>>>>>
>>>>>> *As show above in my second model it return no intercept but look this:
>>>>>> Model1:
>>>>>> (Intercept) -0.58363 0.27948 -2.088 0.0368 *
>>>>>> Model2:
>>>>>> as.factor(2281517)1 -0.5836 0.2795 -2.088 0.0368 **
>>>>>>
>>>>>> They are exactly the same. Could you please tell me what happen?
>>>>>
>>>>> Actually it does not make sense to estimate the model without an
>>>>> intercept unless you assume that it is exactly zero for the first levels
>>>>> of your factors. Think about the contrasts you are interested in. Looks
>>>>> like not the default?
>>>>>
>>>>> Uwe Ligges
>>>>>
>>>>>
>>>>>>
>>>>>> Thank you in advance
>>>>>>
>>>>>>
>>>>>> --
>>>>>> View this message in context: 
>>>>>> http://r.789695.n4.nabble.com/logistic-regression-by-glm-tp4088471p4088471.html
>>>>>> Sent from the R help mailing list archive at Nabble.com.
>>>>>>
>>>>>> ______________________________________________
>>>>>> R-help@r-project.org mailing list
>>>>>> https://stat.ethz.ch/mailman/listinfo/r-help
>>>>>> PLEASE do read the posting guide 
>>>>>> http://www.R-project.org/posting-guide.html
>>>>>> and provide commented, minimal, self-contained, reproducible code.

        [[alternative HTML version deleted]]

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to