I'm trying to calculate the maximum likelihood estimate for a binomial distribution. Here is my code:
y <- c(2, 4, 2, 4, 5, 3) n <- length(y) binomial.ll <- function (pi, y, n) { ## define log-likelihood output <- y*log(pi)+(n-y)*(log(1-pi)) return(output) } binomial.mle <- optim(0.01, ## starting value binomial.ll, ## log likelihood method="BFGS", ## optimization method hessian=TRUE, ## numerial Hessian control=list(fnscale=-1), ## max, not min y=y, n=n) binomial.mle.par <- c(binomial.mle$par, -1/binomial.mle$hessian[1,1]) binomial.mle.par <- as.matrix(binomial.mle.par) rownames(binomial.mle.par) <- c("lambda", "s.e.") colnames(binomial.mle.par) <- c("MLE") print(binomial.mle.par) When I do this I get the following error message: Error in optim(0.01, binomial.ll, method = "BFGS", hessian = TRUE, control = list(fnscale = -1), : objective function in optim evaluates to length 6 not 1 Any help you can give me would be greatly appreciated. -- View this message in context: http://r.789695.n4.nabble.com/Error-in-optim-function-tp3846001p3846001.html Sent from the R help mailing list archive at Nabble.com. ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.