I cc'd r-help to get this message back on the board. Again, you haven't really answered my questions. Comments inline.
On Thu, May 19, 2011 at 9:45 AM, chirine wolley <wolley.chir...@hotmail.com> wrote: > First, thank you for ur response... > Actually I didn't write the entire code ...X, Y and p_tilde are of > course all defined at the beginning of my code. And without them, your code example is not very enlightening, since it doesn't run. > Normally the optimal values that I get should let me create a model for > prediction. However the model currently obtained is not good at all.... You still have provided neither a) what you expect nor b) what optim() is returning. What context is normal? > And I think that the fact it gives me the exactly same values if I > change the function to maximize shows that there's a problem in my code.... While I can't say if this makes a difference or if you accounted for it, optim minimizes by default as outlined in the ?optim page. > >> Date: Thu, 19 May 2011 09:29:02 -0400 >> Subject: Re: [R] problem with optim() >> From: biomathjda...@gmail.com >> To: wolley.chir...@hotmail.com >> CC: r-help@r-project.org >> >> What do you mean when you say "wrong results"? What do you expect for >> the output? Your code doesn't work for me because it references X in >> places and X is not defined. >> >> Have you tested your functions to make sure they return reasonable values? >> >> On Thu, May 19, 2011 at 9:17 AM, chirine wolley >> <wolley.chir...@hotmail.com> wrote: >> > >> > Dear R-users, >> > >> > I would like to maximize the function g above which depends on 4 >> > parameters (2 vectors, 1 real number, and 1 matrix) using optim() and BFGS >> > method. Here is my code: >> > >> > # fonction to maximize >> > >> > g=function(x) >> > { >> > x1 = x[1:ncol(X)] >> > x2 = x[(ncol(X)+1)] >> > x3 = >> > matrix(x[(ncol(X)+2):(ncol(X)+1+ncol(X)*ncol(Y))],nrow=ncol(X),ncol=ncol(Y)) >> > x4 = x[(ncol(X)+1+ncol(X)*ncol(Y)+1):length(x)] >> > res1=rep(0,nrow(X)) >> > res2=matrix(0,nrow=nrow(X),ncol=ncol(Y)) >> > log.res2=matrix(0,nrow=nrow(X),ncol=ncol(Y)) >> > res2.b=rep(0,nrow(X)) >> > res3 = rep(0,nrow(X)) >> > res3.b = rep(0,nrow(X)) >> > for (i in 1:nrow(X)) >> > { >> > res1[i]=1/(1+exp(-t(x1)%*%X[i,]-x2)) >> > for (t in 1:ncol(Y)) >> > { >> > res2[i,t] = >> > ((1-(1+exp(-t(x3[,t])%*%X[i,]-x4[t]))^(-1))^(abs(Y[i,t]-Yb[i])))*(((1+exp(-t(x3[,t])%*%X[i,]-x4[t]))^(-1))^(1-abs(Y[i,t]-Yb[i]))) >> > log.res2[i,t]=log(res2[i,t]) >> > res2.b[i]=res2.b[i]+log.res2[i,t] >> > } >> > res3[i] = p_tilde[i]*log(res1[i]) >> > res3.b[i] = p_tilde[i]*(res2.b[i]) >> > } >> > -(ncol(Y)*sum(res3)+sum(res3.b)) >> > >> > } >> > >> > ##### Gradiants: >> > >> > gr=function(x) >> > { >> > x1 = x[1:ncol(X)] >> > x2 = x[(ncol(X)+1)] >> > x3 = >> > matrix(x[(ncol(X)+2):(ncol(X)+1+ncol(X)*ncol(Y))],nrow=ncol(X),ncol=ncol(Y)) >> > x4 = x[(ncol(X)+1+ncol(X)*ncol(Y)+1):length(x)] >> > gr1 = rep(0,ncol(X)) >> > gr4 = rep(0,ncol(Y)) >> > gr3 = matrix(0,nrow=ncol(X),ncol=ncol(Y)) >> > gr1.b = matrix(0,nrow=nrow(X),ncol=ncol(X)) >> > gr2.b = rep(0,nrow(X)) >> > eta = matrix(0,nrow=nrow(X),ncol=ncol(Y)) >> > d.eta.3 = array(0,dim=c(nrow(X),ncol(X),ncol(Y))) >> > d.eta.4 = matrix(0,nrow=nrow(X),ncol=ncol(Y)) >> > gr3.b1 = array(0,dim=c(nrow(X),ncol(X),ncol(Y))) >> > gr4.b1 = matrix(0,nrow=nrow(X),ncol=ncol(Y)) >> > >> > #Gradiant of alpha and beta >> > >> > for (i in 1:nrow(X)) >> > { >> > gr1.b[i,] = >> > (2*p_tilde[i]-1)*((exp(-t(x1)%*%X[i,]-x2)*X[i,])/(1+exp(-t(x1)%*%X[i,]-x2))^2) >> > gr2.b[i] = >> > (2*p_tilde[i]-1)*((exp(-t(x1)%*%X[i,]-x2))/(1+exp(-t(x1)%*%X[i,]-x2))^2) >> > } >> > for (j in 1:ncol(X)) >> > { >> > gr1[j] = sum(gr1.b[,j]) >> > } >> > gr2 = sum(gr2.b) >> > >> > >> > #Gradiant de w et gamma >> > for (i in 1:nrow(X)) >> > { >> > for (t in 1:ncol(Y)) >> > { >> > eta[i,t] = 1/(1+exp(-t(x3[,t])%*%X[i,]-x4[t])) >> > d.eta.3[i,,t] = eta[i,t]*(1-eta[i,t])*X[i,] >> > d.eta.4[i,t] = eta[i,t]*(1-eta[i,t]) >> > gr3.b1[i,,t] = >> > p_tilde[i]*((-abs(Y[i,t]-Yb[i]))*(1-eta[i,t])^(-1)+(1-abs(Y[i,t]-Yb[i]))* >> > (eta[i,t])^(-1))*d.eta.3[i,,t] >> > gr4.b1[i,t] = >> > p_tilde[i]*((-abs(Y[i,t]-Yb[i]))*(1-eta[i,t])^(-1)+(1-abs(Y[i,t]-Yb[i]))* >> > (eta[i,t])^(-1))*d.eta.4[i,t] >> > } >> > } >> > for (t in 1:ncol(Y)) >> > { >> > for (j in 1:ncol(X)) >> > { >> > gr3[j,t] = sum(gr3.b1[,j,t]) >> > } >> > gr4[t] = sum(gr4.b1[,t]) >> > } >> > c(-gr1,-gr2,-gr3,-gr4) >> > } >> > >> > opt = optim(c(alpha[,c+1],beta[c+1],w,gamma),g,gr,method="BFGS") >> > >> > The problem is that it gives me wrong results, and I have noticed that >> > if I change my function to maximize (for example if, instead of >> > -(ncol(Y)*sum(res3)+sum(res3.b)), I try to maximise -(ncol(Y)*sum(res3)), >> > it >> > gives me the exactly same results...which is not possible! >> > So maybe I am using optim() in a wrong way...Does someone have an idea >> > what could be wrong in my code ? >> > >> > Thank you very much in advance >> > [[alternative HTML version deleted]] >> > >> > ______________________________________________ >> > R-help@r-project.org mailing list >> > https://stat.ethz.ch/mailman/listinfo/r-help >> > PLEASE do read the posting guide >> > http://www.R-project.org/posting-guide.html >> > and provide commented, minimal, self-contained, reproducible code. >> > >> >> >> >> -- >> =============================================== >> Jon Daily >> Technician >> =============================================== >> #!/usr/bin/env outside >> # It's great, trust me. > -- =============================================== Jon Daily Technician =============================================== #!/usr/bin/env outside # It's great, trust me. ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.